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Abstract

Dendrimers are characterized by special features that make them promising candidates for many applications. Here

we focus on two such applications: dendrimers as light harvesting antennae, and dendrimers as molecular amplifiers,

which may serve as novel platforms for drug delivery. Both applications stem from the unique structure of dendrimers.

We present a theoretical framework based on the master equation within which we describe these applications. The

quantities of interest are the first passage time (FPT), probability density function (PDF) and its moments. We examine

how the FPT PDF and its characteristics depend on the geometric and energetic structures of the dendrimeric system.

In particular, we investigate the dependence of the FPT properties on the number of generations (dendrimer size) and

the system bias. We present analytical expressions for the FPT PDF for very efficient dendrimeric antennae and for

dendrimeric amplifiers. For these cases the mean FPT scales linearly with the system length, and fluctuations around the

mean FPT are negligible for large systems. Relationships of the FPT to light harvesting process for other types of

system-bias are discussed.

r 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Dendrimers are highly defined artificial macro-
molecules, which are characterized by a combina-
tion of a high number of functional groups, and a
e front matter r 2004 Elsevier B.V. All rights reserve
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compact molecular structure [1]. The macromole-
cule constituents are organized in a branching
form from a central core, creating a sphere of
chemical end groups at the periphery that can be
tailored according to the requirements [2,3], see
Fig. 1. The concept of repetitive growth with
branching can create unique spherical mono
dispersed dendrimer formations, which are defined
by their generation number [4]. As dendrimers are
d.
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built from ABz-type monomers, each layer or
generation (G) of branching unit doubles or
triples, for z=2 or 3, the number of peripheral
groups. For example, for z=2, a first generation
dendrimer, which is denoted G1, will have one
branching unit, and a second generation dendri-
mer (G2) will have an additional two branching
unit, etc. In addition, the core branching C can be
chosen independently of z (Fig. 1).

Although dendrimers are large molecules, they
can be synthesized and characterized with a
precision similar to that possible with smaller
organic molecules. They do not suffer from the
problem of ‘poly-dispersity’ that troubles linear
macromolecules: that is, constituents of a given set
of dendrimers can have exactly the same molecular
weight rather than being a mixture of chains with a
distribution of molecular weights [5]. The large
number of identical chemical units in the branch-
Fig. 1. Schematic representation of a dendrimer. Shown are the

generation indices, the dendrimer core and end groups. Here

z=2.

Fig. 2. Dendrimer as an amplifier. Upon trigger activation the dendri

its end groups.
ing sub-units, as well as those at the periphery,
confers great versatility; see Refs. [6,7] for
examples.

The special features of dendrimers make them
promising candidates for a large number of
applications. For example, one can vary the type
of the end groups, such that the specifically
designed macromolecule can be used for sensing,
catalysis or bio-chemical activity [8–18]. Most of
the applications of dendrimers have been based
mainly on the high number of functional groups.
Although the enhanced effect that stems from
many identical end groups being present simulta-
neously at the same place is of great importance,
the combination of utilizing the multivalency and
the precise architecture as an active framework
able functioning more than just a scaffold, opens
the way for novel and exciting dendrimeric devices.
Two such concepts that conceal both the multi-
valency and the active framework features are the
use of dendrimers as light harvesting antennae
[19–22], and as molecular amplifiers [7,21,23,24].
The latter use of dendrimers is based on disin-
tegrating the dendrimeric skeleton into its sub-
units, thus releasing all of its functional end-
groups as a result of a signal initiated at the core of
the dendrimer. The amplification is established due
to the exponential increase of the number of
subunits along the dendrimer’s generations (Fig.
2). It has been suggested that when drug molecules
are attached as end groups at the periphery, the
dendrimer can be used as an efficient drug delivery
platform [25]. For latest developments in this
direction the reader is referred to Refs.
[7,21,23–25].

When using dendrimers as antennae, one utilizes
the active framework as an energy funnel, which
directs excitation energy from donors placed at the
periphery of the dendrimer to its core, where an
mer framework undergoes a spontaneous disassembly to release
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Fig. 3. Schematic illustration of a dendrimer as an antenna. The excitation energy hn (shown in red) migrates along the dendrimeric

framework until it reaches the core where the energy is used for some purpose such as a chemical reaction.
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acceptor molecule is placed (Fig. 3). In this work
we focus on this dendrimeric application. We
present a model that describes the migration
process of the excitations across the dendrimeric
framework, and discuss the properties of such
possible antennae.
2. Dendrimers as light harvesting antennae

In recent years efforts have been devoted to
create and manipulate molecular scale systems that
can be used as efficient light harvesting antennae
[15–20,22]. Dendrimers, due their special architec-
ture, have been proposed as candidates for serving
as antennae. Yet, an issue for debate is whether the
energy from the periphery, where chromophores
are placed, is being transferred through space
directly to the dendrimeric core, or alternatively,
through the bonds of the dendrimeric framework,
thus using the special structure of the molecule, as
is shown in Fig. 3. The main argument for a direct
energy transfer relies on the fact that most
dendrimers are synthesized through meta-position
branching that prevents resonative conjugation
among the benzene rings, and leads to localization
of the p-electron excitations [22]. However, it has
been demonstrated that by designing dendrimers
with varying generation lengths, one can create an
energetic funnel which is directed towards the
dendrimeric core, in particular, when the length
between generations decreases for distant core
generations [22]. Such dendrimers are termed
extended, in contrast to compact dendrimers for
which the length between generations is fixed.
More recently dendrimers that are branched
through meta-position and para-position were
synthesized [26], thus opening another possibility
for building dendrimeric antenna. In addition to
the demand that the dendrimer is design such that
energetic funnel is created, the demand for a rigid
dendrimeric structure is required for energy
transfer through bonds. A rigid structure helps
energy transfer through bonds competing favor-
ably against direct energy transfer.

Here, we present a model for dendrimeric
antenna assuming that the excitation energy
migrates along the bonds. In Section 2.1, we
formulate the model, which is then studied in
details in Sections 2.2–2.4. The presented model is
general and can be applied for other systems as
well [27,28]. Throughout these sections relation-
ships to dendrimers are emphasized, and in
particular Section 2.5 is dedicated to the thermo-
dynamic aspects of dendrimeric antennae.
2.1. Formulation of the model

The dynamics of an excitation (signal) spreading
over a dendrimer can be described as a one-
dimensional nearest-neighbors hopping process
[19,20]. This mapping is valid if one is interested
only in the distance of the excitation from the core,
and not on its exact position within a generation.
Thus, the time evolution of the signal is given by a
set of coupled kinetic equations with an absorbing
and reflecting boundary conditions:

q
qt

P0ðtÞ ¼ af
1P1ðtÞ absorbing site; (1a)

q
qt

P1ðtÞ ¼ �ðaf
1 þ ab

1ÞP1ðtÞ þ af
2P2ðtÞ; (1b)
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q
qt

PmðtÞ ¼ ab
m�1Pm�1ðtÞ � ðaf

m þ ab
mÞPmðtÞ

þ af
mþ1Pmþ1ðtÞ; 2pmpn � 1; ð1cÞ

q
qt

PnðtÞ ¼ ab
n�1Pn�1ðtÞ � af

nPnðtÞ reflecting site:

(1d)

We introduce a reflecting boundary at the
periphery (site j ¼ n; see Fig. 4) assuming that
the signal stays in the system as long as it does not
reach the core, i.e. the absorbing site j=0. Once
the signal reaches the absorbing site it is captured
there. The other symbols appear in Eqs. (1a)–(1d)
are: PjðtÞ is the probability density function (PDF)
that the signal occupies site j at time t, and af

j ða
b
j Þ is

the transition rate from site j to site j�1 (j+1). Fig.
4 presents a schematic illustration of the system.
The coupled Eqs. (1a)–(1d) are also referred to as
the system’s master equation. For the case of a
dendrimeric amplifier, where the signal propaga-
tions along the dendrimer results in its irreversible
disassociation, all the backward rates in Eqs.
fan−1

ban−1

fan

ba2

n n-1 :

Core

G=2

G=2

G=1

fa2
fa1

ba1

2 1 0

(a)

(b)

Fig. 4. (a) Schematic illustration of the escape process from a system

absorbed, namely site j=0 is a trap. (b) The mapping of a two-genera

corresponding discussion.
(1a)–(1d) should be set to zero. This results in a
simplified set of equations,

q
qt

P0ðtÞ ¼ af
1P1ðtÞ absorbing site; (1e)

q
qt

PmðtÞ ¼

� af
mPmðtÞ þ af

mþ1Pmþ1ðtÞ; 1pmpn � 1; ð1fÞ

q
qt

PnðtÞ ¼ �af
nPnðtÞ reflecting site: (1g)

The site index j represents the jth generation
of the dendrimer. The dependence of the transition
rates on j should reflect both the exponential
branching of the dendrimer end groups with
the increase in the generation number, which can
be viewed as an entropic bias towards the
periphery [19,20], and a possible energetic funnel
towards the core. We elaborate on this issue in
Section 2.5.

It is convenient to write the master equa-
tion expressed by Eqs. (1a)–(1d) in a matrix
f
a2

fa1

ba1

2 1 0

with n generations (sites). Once the signal reaches site j=0 it is

tion dendrimer onto a one-dimensional system. See text for the
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representation,

q~PðtÞ=qt ¼ A~PðtÞ; (2)

where ½~PðtÞ�j ¼ PjðtÞ: The propagation matrix A is
a tridiagonal n-dimensional square matrix (the
absorbing site is not included in the propagation
matrix) that contains information about the time
evolution of the signal, in term of the transition
rates, af

j ’s and ab
j ’s.

The formal solution of the master equation
reads

~PðtÞ ¼ C expðktÞC�1~P0; (3)

where ½~P0�j ¼ dj;x is the initial condition (the
process starts in site x with probability 1), k is
the eigenvalue matrix obtained through the
similarity transformation k ¼ C�1AC; and C and
C�1 are, respectively, the eigenvector matrix and
its inverse of k.

Due to the normalization condition we have
P0ðtÞ þ

Pn
j¼1PjðtÞ ¼ 1; where P0ðtÞ is the PDF to

occupy the trap at time t. We further define SðtÞ ¼

U
*

n
~PðtÞ ¼

Pn
j¼1PjðtÞ as the survival probability

which is the probability that the signal has not
been absorbed, where ~Un ¼ ð1; 1; . . . ; 1Þ is the
summation row vector on n dimensions. Note that
P0ðtÞ increases monotonically with time, while SðtÞ

decreases monotonically with time. Both functions
depend on the initial condition x. Accordingly,
from this point on, we add the initial condition x

as an additional variable in the survival prob-
ability, Sðt; xÞ; and functions that are derived from
it. A function that plays a central role in the theory
of random walks in finite and seminfinite systems,
and is of great importance in applications, is the
first passage time (FPT) PDF Fðt;xÞ [29]. Fðt;xÞ is
defined by

Fðt;xÞ ¼
q
qt

½1 � Sðt;xÞ�; (4)

which is equivalent to Eq. (1a); namely, the FPT
PDF is the rate of change of the trap occupation
probability. By comparing the temporal behavior
of Eq. (4) to experimental results, one can extract
the system transition rates that appear in Eqs.
(1a)–(1d). We note that in a recent work [30], the
FPT PDF was studied and related to dendrimeric
antennae by a similar approach, although for the
case where matrix A represents only the branching
of the dendrimer. The importance of computing
the PDF of the FPT and not just its moments is
emphasized, for example, by single molecule
experiments where the PDF is measured directly.
Experiments involving individual dendrimers have
been reported recently [31].

2.2. The first passage time PDF

Below we show some properties of the FPT
PDF in Eq. (4) for several invariant systems, which
are of interest to dendrimers. By an invariant
system we mean that the transition rates are taken
to be independent of the site (generation) index j,
namely, ab

j ¼ k� and af
j ¼ kþ for all j. For these

systems the ratio between the forward and the
backward transition rates, Q � k�=kþ; is the
relevant parameter. We distinguish between three
cases, Q 	 1; Q ¼ 1 and Q 
 1:
(1)
 first case Q 	 1 represents a system that
displays a bias towards the absorbing site.
Such a choice can describe a dendrimer that
has a large energetic bias towards its core
[19,20,32], or a dendrimer that irreversibly
dissociates as the signal propagates across the
molecule as in molecular amplifiers [7,23–25],
and multi-triggering self-immolative dendri-
mers [33].
(2)
 The second case Q ¼ 1 describes bias-free
dynamics, which means that the entropic bias
is canceled by the energetic bias in the
corresponding dendrimeric antennae systems.
(3)
 The third case, Q 
 1; represents an escape
process against a constant force, which for our
purposes is translated into a dendrimeric
antenna in which the energetic bias does not
compete against or supports the entropic bias.
Fig. 5a shows Fðt; nÞ for an invariant system
and Q ¼ 0:01; as a function of the dimensionless
time t � tkþ; for several system sizes, n=2,3,4,6,
and x ¼ n; namely, the process starts at the
reflecting site (the periphery). Fðt; nÞ is mono-
peaked for all n values (and in general for all n41)
and decays exponentially at large times. Fig. 5b
shows three characteristics of a density function,
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Fig. 5. (a) Fðt; nÞ for Q=0.01, and several values of n, n=2, 3, 4, and 6, correspond to the full, dotted-dashed, dashed, and dotted

curves, respectively. (b) The parameters R, s; and t; are shown for Fðt; 6Þ: (c) The mean of the density functions displays a linear scaling

with n and (d) the relative error R decays as n�1=2:

Fig. 6. (a) Fðt; 4Þ and Gðt; 4Þ (inset) for two values of Q, Q=0.01 (full curves), and Q=1 (dashed curves). (b) The mean for the

symmetric case scales as n2, and R reaches its asymptotic value [=(2/3)1/2, see Eq. (18)] at considerably small systems (inset).
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here for Fðt; 6Þ: These are the average ot4; the
standard deviation s ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ot24�ot42

p
; and

their ratio R ¼ s=ot4; also known as the relative
error of the PDF. The relative error is an
important characteristic that gives a ‘‘normalized’’
measure for a spread of a density function. We
discuss this quantity further in Section 2.4. In Figs.
5c and 5d we show the dependence of these
characteristics on n. Note that otðnÞ4 � n; and
RðnÞ �

ffiffiffiffiffiffiffiffi
1=n

p
; for Q 	 1:
Fig. 6a compares Fðt; 4Þ of an invariant sym-

metric system, namely Q ¼ 1; to a trap-oriented
ðQ 	 1Þ system with Q ¼ 0:01: Although, the
location of the peak of the PDFs is similar for
both cases, Fðt; 4Þ for the symmetric case is
broader. This is also reflected in the slower
saturation of the cumulative probability function
of the FPT PDF Gðt; nÞ ¼

R t
0 Fðs; nÞds; shown in

the inset of Fig. 6a for n=4. For some applica-
tions, Gðt; nÞ is the direct information obtained
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Fig. 7. (a) The slowly decaying Fðt; 4Þ for Q ¼ 2:5 in comparison to the symmetric case, and (b) The characteristics of the PDF for

Q=50 are otðnÞ4 � en log Q; and R � 1(inset).
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from experiments [34], and can be used to
obtain the system characteristics [35], such as
the mean of Fðt; nÞ: For the symmetric case the
mean of the PDF scales as n2 (Fig. 6b), while the
relative error R is independent of n for large
systems (inset of Fig. 6b), in contrast to the trap-
biased system.

For the third case of an invariant system with a
bias towards the periphery ðQ ¼ 2:5Þ; Fðt; 4Þ
decays slowly relative to its symmetric invariant
counterpart (Fig. 7a). Note that as Q increases the
smallest absolute eigenvalue, jlminj; dominates the
PDF behavior, which leads to the relation ot4 �

1=jlminj: Fig. 7b shows that for this case the mean
of the PDF grows exponentially with the system
size, ot4 / en log Q; and the relative error is
approximately unity (inset).
2.3. The mean first passage time

The characteristics of a PDF are its moments
and their interrelations. The m40 moment of the
FPT PDF is defined by

otmðxÞ4 ¼

Z 1

0

tmFðt;xÞdt

¼ m

Z 1

0

tm�1Sðt;xÞdt: ð5Þ

Here, the second equality is obtained when
integrating by parts, using Eq. (4), and noticing
that the boundary term vanishes due to the fact
that the survival probability is zero at infinite
times. Substituting m ¼ 1 in Eq. (5), the mean first
passage time (MFPT) is obtained

otðxÞ4 ¼

Z 1

0

Sðt;xÞdt ¼ �~UnA
�1~P0; (6)

where the second equality is obtained by using Eq.
(3). Thus, one needs to invert the matrix A to
calculate the MFPT. Note that as long as all the
forward transition rates are finite, matrix A�1

exists. Eq. (6) can be written as

otðxÞ4 ¼
Xn

j¼1

tj;x; tj;x � �A�1
j;x ; (7)

where tj;x is the mean residence time (MRT) of site
j when starting at site x, before trapping occurs
[36]. Although tj;x can be expressed in terms of the
transition rates for any system size and arbitrary
choice of the transition rates [36,37], we present
below the MFPT for several invariant systems,
namely, ab

j ¼ k� and af
j ¼ kþ for all generations j.

For these cases, the MFPT reads [36]

otðxÞ4 ¼
1

Dk
½x þ

Qnþ1

1 � Q
ð1 � Q�xÞ�; Q �

k�

kþ

a1;

(8)

where Dk ¼ kþ � k�; and,

otðxÞ4 ¼
xð2n þ 1 � xÞ

2k
for k� ¼ kþ � k;

(9)
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For large biases, Q 	 1 and Q 
 1; Eq. (8)
reduces to

otðxÞ4

¼
x=Dk; Q 	 1;

eðnþ1Þ ln Qð1 � Q�xÞ=½ð1 � QÞDk�; Q 
 1:

(

ð10Þ

Eqs. (9) and (10) demonstrate the dependence of
the MFPT on the system size. For a system that
displays a bias towards the center of the dendrimer,
the average time to be trapped scales linearly with
the initial site of the process, x. For a system which is
biased towards the periphery, an exponential depen-
dence of the MFPT with the system size is exposed,
regardless of the initial site of the process. For a
system with no bias at all, namely k� ¼ kþ; the
scaling of the MFPT with the size of the system
depends on the initial site; when x ¼ 1 a linear
scaling with the system size is evident, while a square
scaling with the system size is obtained for x ¼ n:

For the special case of an invariant system and
k� ! 0 (we term this system a ‘‘death’’ system) a
general expression for the mth moment is valid.
For starting at the reflecting site x ¼ n; we have

otmðnÞ4 ¼
1

km

ðn þ m � 1Þ!

ðn � 1Þ!
(11)

Eq. (11) gives a full characterization of FPT
PDF of a ‘‘death’’ process, and can be used to
obtain the first passage time PDF by inverting the
Laplace transform of FðtÞ; F̄ðsÞ ¼

R1
0 FðtÞe�st dt ¼P

motm4ð�sÞm=m!: This procedure yields

FðtÞ ¼ kðktÞn�1e�kt=ðn � 1Þ!: (12a)

Eq. (12a) is the Poisson PDF. It corresponds to
very efficient antennae, and to the dendrimeric
amplifier (Fig. 3). In the latter case, the signal
propagation along the dendrimer results in its
irreversible disassociation. For a situation where
each of the single events occurs with a specific rate,
the solution of FðtÞ; which is obtained by solving
Eqs. (1e)–(1g), reads

FðtÞ ¼
Xn

i¼1

af
i e

�af
i
tAi; Ai ¼

Y
jai

af
j =ða

f
j � af

i Þ:

(12b)
Note that the results in this section give a
measure for the efficiency of dendrimeric antennae
when assuming that the excitation energy transfers
through bonds and that multiple excitation do
not play a role. However, for multi-excitation
system the MFPT of the first excitation to
reach the core is shorter than the MFPT presented
here, and depends on the number of excitation
the process starts with [38]. For the case of
the dendrimeric amplifier, the quantity that
measures the efficiency of the amplification should
involve the exponential branching factor,
which represents the number of released mole-
cules, in addition to the temporal behavior given
by Eq. (12b).

2.4. The second moment of the first passage time

PDF

The second moment of a PDF provides infor-
mation about its spread. For our model, the
expression for the second moment ot2ðxÞ4 reads

ot2ðxÞ4 ¼ 2~UnA
�1A�1~P0; (13)

which is obtained by using Eqs. (4) and (5).
Rewriting Eq. (13) as

ot2ðxÞ4 ¼ 2
Xn

j¼1

otðjÞ4tj;x; (14)

the second moment can be calculated by using Eq.
(7) for an arbitrary choice of the transition rates.
As mentioned, here we are interested in invariant
systems. By straightforward calculations we obtain
the second moment for an invariant system and for
Qa1;

ot2ðnÞ4 ¼

ffiffiffi
2

p

Da

 !2
nðn þ 1Þ

2

�

þ
Qnþ1ð2n þ 1Þ � Qnþ2ð3n � 1Þ þ Q2nþ2 � 2Q

ð1 � QÞ
2

�

ð15Þ

which for large n systems reduces to

ot2ðnÞ4 �
ðn þ 1Þn=2; Q 	 1;

2Q2nþ2=½Dað1 � QÞ�2; Q 
 1:

(

(16)
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Fig. 8. A schematic illustration of a four generation dendrimer

with z=2 and C=2. Also shown are the energies of each

generation E44E34E24E1.

Fig. 9. The excitation energy as a function of the generation

index. Here, e=2, e1=6, U=1, and n=9. The first point

corresponds to the core (trap).
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For the symmetric invariant system Q ¼ 1; we
get

ot2ðnÞ4 ¼
nðn þ 1Þ

12k2
ð5n2 � 5n þ 2Þ: (17)

The relative error introduced in Section 2.1,

R(n)=s(n)/ot(n)4, where sðnÞ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ot2ðnÞ4�otðnÞ42

p
; can be now calculated

for the limiting cases using Eqs. (9–10) and
Eqs. (16–17) large system, we get for invariant
systems and x ¼ n:

RðnÞ ¼

ffiffiffiffiffiffiffiffi
1=n

p
; Q 	 1;ffiffiffiffiffiffiffiffi

2=3
p

; Q ¼ 1;

1; Q 
 1:

8>><
>>: (18)

Eq. (18) can be compared with the numerical
results (Figs. 5–7). Note that only a trap-oriented
system exhibits the desirable behavior of RðnÞ;
namely, RðnÞ vanishes (as 1=

ffiffiffi
n

p
) for large systems.

2.5. Thermodynamics and dendrimers

In this section we describe thermodynamically a
dendrimeric antenna [39], from we relate the
transition rates of an invariant system to one
another. We consider an excitation that migrates
on a dendrimer by nearest-neighbors jumps. The
core is assumed to capture the energy for some
time, depending on its release rate. Namely, the
core functions as a reversible trap (later on we take
the limit of an irreversible trap). Energy levels are
assigned for each generation, such that a funnel
towards the core is created

E0 ¼ �0;

EG ¼ �0 þ �1 þ ðG � 1ÞU ; 1oGpn;
(19)

where �0 is the core excitation energy, �1 is the
excitation energy difference between the core
excitation energy and the first generation excita-
tion energy, and U is the excitation energy
difference between each nearest-neighbors genera-
tions (Fig. 8). The excitation energy levels descend
from the periphery to the core, which creates an
energetic funnel (Fig. 9).

The structure of a dendrimer with branching z

towards the periphery, and a core branching C,
leads to the degeneracy

f G ¼ CzG�1: (20)

Having assigned excitation energies and degen-
eracy to each of the generations, the partition
function of the dendrimer is

Z ¼ e��b þ
Xn

G¼1

f Ge�EGb

¼ e��b þ Ce�ð�þ�1Þb
Xn

G¼1

½ze�Ub�G�1; ð21Þ
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where b�1
¼ kBT ; kB is the Boltzmann constant

and T is the temperature. The equilibrium
occupation probabilities of the various generations
are

P0;eq ¼ e��b=Z;

PG;eq ¼ P0;eqCe��1b½ze�Ub�G�1;
(22)

from which the free energy of each generation
follows [39]

FG ¼ �b�1 lnðPG;eqQÞ ¼ EG � b�1 lnðf GÞ: (23)

Fig. 10 shows the free energy as a function of the
generation index for three values of the parameter
D ¼ lnðzÞ=ðUbÞ; D ¼ 0; 1; 2: For D ¼ 0 an energetic
funnel towards the the trap, similar to that shown
in Fig. 9, is created. For D ¼ 1 there is no energetic
preference to be at a specific generation (excluding
the trap), whereas for D ¼ 2 an energetic pre-
ference towards the periphery exists. Namely at
high temperatures the energetic funnel becomes
less efficient relative to the geometric one.

Now, we wish to translate the energetic picture
into the dynamical model by obtaining expressions
for the transition rates from the thermodynamic
picture. To do so, we used the equilibrium
condition [39,40]

Peq;Gab
G ¼ Peq;Gþ1af

Gþ1: (24)
Fig. 10. The free energy as a function of the generation

number, for three different values of D, D=0, 1, 2. Here z=2

and C=2.
From Eqs. (22) and (24) it follows that the
transition rates are given by

k� ¼ kþze�Ub;

ab
0 ¼ kþCe��1b

(25)

and kþ is arbitrary. Note that k� has two
components; the component z of geometric origin,
whereas e�Ub emerges from energetic considera-
tion.

Taking the limit �1b 
 1 in Eq. (22), leads to
ab

0 ¼ 0; we thus recover the description of an
irreversible trap shown in Fig. 4. Accordingly, the
expression for the moments of the FPT PDF, Eqs.
(9) and (10) and Eqs. (16) and (17), can be written
now in terms of the energetic model described in
this section.
3. Concluding remarks

Dendrimeric applications exploit the special
architecture of dendrimers to build nano-devices.
Both periphery-to-core and core-to-periphery pro-
cesses are possible in applications. This is demon-
strated by using dendrimers as antennae and as
amplifiers. In this work, we have studied mainly
the use of dendrimers as efficient light harvesting
antennae. We have investigated the properties of
the first passage time PDF of a signal migrating on
the dendrimer to reach the core from the
periphery. Calculations of the first two moments
of this PDF as a function of the system size n, and
the parameter Q have been given for invariant
systems. The parameter Q determines the process-
bias, namely for large (small) values of Q there is a
bias towards the periphery (core). It has been
shown that the dependence of the mean of the first
passage time PDF on n changes from exponential
to quadratic and then to linear, for periphery-
oriented, non-biased, and core-oriented systems,
respectively. The fluctuations around the mean
have been shown to scale with n as the scaling of
the mean for the first two systems, and as the
square root of the mean for the core-oriented
system. It is clear that when designing efficient
antennae, one should try to build a device which
has a bias towards the region that collects the light.
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The first two moments of the core-oriented system
characterizes the efficiency of such antennae.
Moreover, in the limit of a very large bias
(Q ! 0), the exact solution of the first passage
time PDF can be obtained, and is simply the
Poisson PDF. For a more general system, where
each of the single events occurs with a different
rate, the FPT PDF, which is given by Eq. (12b), is
a sum of weighted exponentials whose rates being
the rates of the single events. This case of very
large bias is suitable to describe dendrimeric
amplifiers and multi-triggering self-immolative
dendrimers as well.

Finally, by using two simple physical argu-
ments, which are the entropic-like bias of the
dendrimeric exponential branching, and energetic
levels assigned to each generation in the dendrimer
as a function of its distance from the core,
relationships between the system rate constants
that determine Q have been proposed.
References

[1] D.A. Tomalia, J.M.J. Frechet, J. Polym. Sci. A 40 (2002)

2719.

[2] A.K. Patri, I.J. Majoros, J.R. Baker, Curr. Opin. Chem.

Biol. 6 (2002) 466.

[3] S.-E. Stiriba, H. Frey, R. Haag, Angew. Chem. Int. Ed. 41

(2002) 1329.

[4] D.A. Tomalia, A.M. Naylor, W.A. Goddard III, Angew.

Chem. Int. Ed. 29 (1990) 138.

[5] K.E. Uhrich, J.M.J. Frechet, J. Chem. Soc. Perk. Tran. 1:

Organic Bio-Organic Chem. (1972–1999) 13 (1992) 1623.

[6] S.L. Gilat, A. Adronov, J.M.J. Frechet, Angew. Chem.

Int. Ed. 38 (1999) 1422.

[7] R.J. Amir, N. Pessah, M. Shamis, D. Shabat, Angew.

Chem. Int. Ed. 42 (2003) 4494.

[8] M.W. Grinstaff, Chem. Eur. J. 8 (2002) 2839.

[9] D. Seebach, G.F. Herrmann, U.D. Lengweiler, B.M.

Bachmann, W. Amrein, Angew. Chem. Int. Ed. 35

(1996) 2795.

[10] Y. Kim, S.C. Zimmerman, Curr. Opin. Chem. Biol. 2

(1998) 733.

[11] O.L. Padilla De Jesus, H.R. Ihre, L. Gagne, J.M.J.

Frechet, F.C. Szoka Jr., Biocon. Chem. 13 (2002) 453.

[12] C.R. DeMattei, B. Huang, D.A. Tomalia, Nano Lett. 4

(2004) 771.

[13] A.-M. Caminade, J.-P. Majoral, Acc. Chem. Res. 37

(2004) 341.
[14] F.S. Precup-Blaga, J.C. Garcia-Martinez, A.P.H.J. Schen-

ning, E.W. Meijer, J. Am. Chem. Soc. 125 (2003) 12953.

[15] J. Hofkens, M. Cotlet, T. Vosch, P. Tinnefeld, K.D.

Weston, C. Ego, A. Grimsdale, K. Muellen, D. Beljonne,

J.L. Bredas, S. Jordens, G. Schweitzer, M. Sauer, F. De

Schryver, Proc. Nat. Acad. Sci. (USA) 100 (2003) 13146.

[16] M.S. Choi, T. Aida, H. Luo, Y. Araki, O. Ito, Angew.

Chem. Int. Ed. 42 (2003) 4060.

[17] N.D. McClenaghan, R. Passalacqua, F. Loiseau, S.

Campagna, B. Verheyde, A. Hameurlaine, W. Dehaen, J.

Am. Chem. Soc. 125 (2003) 5356.

[18] F. Vogtle, M. Gorka, V. Vicinelli, P. Ceroni, M. Maestri,

V. Balzani, Chem. Phys. Chem. 2 (2001) 769.

[19] A. Bar-Haim, J. Klafter, R. Kopelman, J. Am. Chem. Soc.

119 (1997) 6197.

[20] A. Bar-Haim, N. Eizenberg, J. Klafter, Organic Meso-

scopic Chemistry, Blackwell Science Ltd, Oxford, 1999.

[21] O. Flomenbom R.J. Amir, D. Shabat, J. Klafter,

Dendrimer-based devices: antennae and amplifiers, Energy

harvesting materials, in: D.L. Andrews (Ed.), in press.

[22] R. Kopelman, et al., Phys. Rev. Lett. 78 (1997) 1239.

[23] F.M.H. de Groot, C. Albrecht, R. Koekkoek, P.H.

Beusker, H.W. Scheeren, Angew. Chem. Int. Ed. 42

(2003) 4490.

[24] M.L. Szalai, R.M. Kevwitch, D.V. McGrath, J. Am.

Chem. Soc. 125 (2003) 15688.

[25] M. Shamis, H.N. Lode, D. Shabat, J. Am. Chem. Soc. 126

(2004) 1726.

[26] Y. Pan, M. Lu, Z. Peng, J.S. Melinger, J. Org. Chem. 68

(2003) 6952.

[27] R. Zwanzig, Nonequilibrium Statistical Mechanics, Oxord

University Press, New York, 2001.

[28] O. Flomenbom, J. Klafter, Phys. Rev. E 68 (2003) 041910.

[29] S. Redner, A Guide to First-Passage Process, Cambridge

University Press, Cambridge, UK, 2001.

[30] J.L. Bentz, F.N. Hosseini, J.J. Kozak, Chem. Phys. Lett.

370 (2003) 319.

[31] R. Gronheid, J. Hofkens, F. Köhn, T. Weil, E. Reuther, K.
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