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Abstract – The diffusion process of N hard rods in a 1D interval of length L(→∞) is studied
using scaling arguments and an asymptotic analysis of the exact N -particle probability density
function (PDF). In the class of such systems, the universal scaling law of the tagged particle’s mean
absolute displacement reads, 〈|r|〉 ∼ 〈|r|〉free/nµ, where 〈|r|〉free is the result for a free particle in
the studied system and n is the number of particles in the covered length. The exponent µ is given
by, µ= 1/(1+ a), where a is associated with the particles’ density law of the system, ρ∼ ρ0L−a,
0� a� 1. The scaling law for 〈|r|〉 leads to, 〈|r|〉 ∼ ρ(a−1)/20 (〈|r|〉free)(1+a)/2, an equation that
predicts a smooth interpolation between single-file diffusion and free-particle diffusion depending

on the particles’ density law, and holds for any underlying dynamics. In particular, 〈r2〉 ∼ t 1+a2 for
normal diffusion, with a Gaussian PDF in space for any value of a (deduced by a complementary

analysis), and, 〈r2〉 ∼ t β(1+a)2 , for anomalous diffusion in which the system’s particles all have the
same power-law waiting time PDF for individual events, ψ∼ t−1−β , 0<β < 1. Our analysis shows
that the scaling 〈r2〉 ∼ t1/2 in a “standard” single file is a direct result of the fixed particles’ density
condition imposed on the system, a= 0.

Copyright c© EPLA, 2008

Introduction. – The basic single-file problem is a
diffusion problem of N hard rods (no bypassing is allowed)
in an open 1D interval, namely, the system’s length, L,
goes to infinity, and the particles’ density, ρ, is fixed,
ρ= ρ0 =N/L, so N =L/∆, for some microscopic length
scale ∆ [1]. (∆ cannot be smaller than the particle’s
diameter, and can be taken as the average distance
between the centers of nearest neighbor particles.) The
underlying dynamics are homogenous, so for stochastic
dynamics all the particles in the system have the same
diffusion coefficient D0. The statistics of a given particle,
the tagged particle, in a basic stochastic single file, are
known [2–9]. Hereafter, the tagged particle is identified by
the coordinate r, and is taken to be the middle particle
in the file (odd N). The probability density function
(PDF) of the tagged particle is asymptotically Gaussian
in position, with a variance that scales as the square root
of time,

P (r, t|r0)∼ (4Dt)− 14 exp
{
− (r− r0)

2

√
4Dt

}
, D=D0ρ

−2
0 .

(1)
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The PDF in eq. (1) was first obtained in [2]. Subsequent
studies provided complementary characterizations of the
process [6–15], including the correlative motion of the
particles in the file [15], the fluctuations in the particles’
density [6,15], the occurrence of a negative velocity auto-
correlation function and non-pathological single event
PDFs in time and space [14], and the system’s normal
behavior in higher dimensions [6]. For a deterministic
single file with momentum exchange upon collisions, the
tagged particle’s PDF is also Gaussian but with a variance
that scales as the time [3]. The single-file process has also
been associated with monomer dynamics in a large linear
polymer: both systems share a similar scaling law for the
mean square displacement of a tagged particle [16,17].
The single-file problem has attracted a lot of attention

in recent years because it can model many real-world
microscopic processes that now can be measured [17–26].
Examples include diffusion within biological and synthetic
pores, and in porous materials, of water, ions, proteins,
and organic molecules [18,19,26]. Diffusion along 1D
objects, such as the motion of motor-proteins along
filaments [26]. Conductance in nano-wires [25]. However,
in real-world systems, one, or several, of the conditions
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that define the basic single-file process can break down.
For example, real-world systems are finite, which means
that a steady-state regime is sure to be observed [27].
In an inhomogeneous system, the particles’ diffusion
coefficients are distributed with some PDF [28]. In a
quasi-1D system, e.g., a nano-channel, the particles may
bypass each other with some constant probability upon
collisions [29–32], and also in realistic channels, the parti-
cles can interact with the channel, meaning imposing (for
example) a periodic potential on the file’s particles [12].
Here, we relax the condition of the fixed particles’

density, and use instead the scaling law, ρ∼L−a,
0� a� 1, which interpolates smoothly between the
standard-single-file law (a= 0) and a free diffusion
(a= 1). We find a universal scaling law for the tagged
particle’s mean absolute displacement, 〈|r|〉 ∼ 〈|r|〉free/nµ,
where 〈|r|〉free is the result for a free particle in the studied
system, n is the number of particles in the covered length,
and µ= 1

1+a . This scaling law describes systems with any
underlying dynamics (e.g. normal diffusion, deterministic
dynamics (super-diffusion), continuous time random
walk dynamics (sub-diffusion)). The scaling law for 〈|r|〉
leads to 〈|r|〉 ∼ ρ(a−1)/20 (〈|r|〉free)(1+a)/2, an equation
that predicts a smooth interpolation between single-file
diffusion and free-particle diffusion depending on the
particles’ density law, and holds for any underlying
dynamics. In particular, 〈r2〉 ∼ t(1+a)/2, for stochastic
normal diffusion with a Gaussian PDF in space for any
value of a (found in a complementary analysis), and,
〈r2〉 ∼ tβ(1+a)/2, for anomalous diffusive hard rods all
having the same waiting time (WT) PDF for individual
events, ψ∼ t−1−β , 0<β < 1. Our analysis shows that the
scaling 〈r2〉 ∼ t1/2 in a standard single file results from the
constant density condition imposed on the file (a= 0).

〈|r|〉 for the tagged particle in a single file. – It
is well known that for a Brownian particle (i.e. a single-
particle random walk in an unconfined geometry and
no traps), the mean absolute displacement scales as,

〈|r|〉free ∼
√
D0t, e.g. [33]. (Along the letter,

〈|r|〉2
〈r2〉 → o(1)

for large times.) For a tagged hard rod in the presence of
hard rods in 1D, a slower expansion is expected because
for a net distance to be covered by the tagged particle, the
file’s particles (in the relevant direction) must “cooperate”
and move in the direction of the propagation. Namely, the
tagged particle evolution is a result of a correlative motion
of the system’s particles. These two basic properties are
used below to derive a scaling law for 〈|r|〉 for a tagged
particle in a general class of processes of hard rods in
1D. We start by choosing 〈|r|〉free as the natural length
scale in the system. (This comes out in the rigorous
calculations in the next subsection, but it is the only
possible choice to begin with.) Then, the scaling argument
must be proportional to one over the number of particles
in the covered interval, n, raised to yet unknown power µ
(assuming a non-decreasing scaling function). The more
particles there are in the covered length, the harder is to

achieve cooperation from them all. Thus, we write,

〈|r|〉= f
( 〈|r|〉free

nµ

)
.

〈|r|〉free is the upper bound on the diffusion for the tagged
particle, so for n= 1, 〈|r|〉= 〈|r|〉free. Thus, we need to take
a linear scaling function,

〈|r|〉 ∼ 1
nµ
〈|r|〉free. (2)

Note that n in eq. (2) is a function of 〈|r|〉 and not of
〈|r|〉free because the number of particles in the actual
covered distance is counted. Now, for the standard-single-
file process, the particles’ density is fixed, n= ρ0r, so,
〈|r|〉 ∼ 1

(ρ0〈|r|〉µ (D0t)
1/2, and consequently,

〈|r|〉 ∼ ρ−µ/(1+µ)0 (D0t)
1/[2(1+µ)]. (3)

Equation (3) leads to the known scaling law for standard
single file when µ= 1, implying,

〈|r|〉 ∼
√
ρ−10 〈|r|〉free, (4)

valid for a standard single file system (constant density).
Similar relation was obtained in ref. [10]. However, µ in
eq. (2) can be a function of the particles’ density, and this
is shown in the next section.
Equations (2)–(4) imply the following: as eq. (4) is

equivalent to, 〈r2〉 ∼ (D0
ρ20
t)1/2, the generalized diffu-

sion coefficient reads, D=D0ρ
−2
0 , and this result

for D coincides with D in eq. (1). Also, the result,

〈|r|〉 ∼ ρ−1/20 (D0t)
1/4, for a tagged particle in a standard

single file is associated with three factors: 1) the require-
ment that the free-particle mean absolute displacement
scales as 〈|r|〉free ∼ (D0t) 12 , 2) the requirement for “coop-
eration” from the other particles in the length 〈|r|〉 that
scales as one over the number of particles in the covered
length, and 3) the condition of a constant particles’
density.
The scaling law in eq. (4) enables finding solutions

for the mean square displacement for a tagged particle
in related systems. For example, for the deterministic
standard single file in which, 〈|r|〉free ∼ |ν|t, for some
initial velocity ν, 〈|r|〉 ∼

√
ρ−10 |ν|t. Equivalent result was

obtained in [3]. Another example is a system in which
any particle performs a random walk with a WT-PDF
that is not exponential, but decays as a power law,
ψ(t)∼ t−1−β , 0<β < 1. This can be the outcome of sticky
walls or a branching geometry, and it is called here
a CTRW (continuous time random walk) dynamics or
just CTRW. (Note that the particles in the standard-
single-file process have a single exponential WT-PDF
for the individual transitions, i.e. ψ(t)∼ e−t/τ , for some
microscopic timescale τ .) For the CTRW model, 〈|r|〉free ∼
(D̃0t)

β
2 [34]. Using this relation in eq. (4) gives,

〈|r|〉 ∼ ρ−1/20 (D̃0t)
β
4 ,
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as the density is still fixed. This result means that although
all the particles move slowly, the single-file nature of the
process is still important: the tagged particle motion is
still hindered by the presence of the file’s particles, and
cooperation from the file’s particle is still required for a net
evolution in a given direction to be obtained. Similar result
for a CTRW dynamics with constant particles density was
recently obtained in ref. [35].
Equation (2) can be a starting point in analyzing the

effect of a general particles’ density on the dynamics of the
tagged particle. Consider a particles’ density that obeys,

ρ=
1

∆
(L/∆)−a, 0� a� 1, (5)

where the limits on a are expected: a cannot be negative
as the number of (classical) finite-size particles cannot be
larger than the length of the system over the microscopic
length ∆ (in the same basic units); a is bounded by unity
from above as a> 1 means a depletion of particles as the
system’s length increases, and such a process is not consid-
ered here. The value a= 0 corresponds to the standard-
single-file process, and the value a= 1 corresponds to the
free diffusion process. Strictly speaking, ρ in eq. (5) is the
initial density of the file: the particles are positioned at,
x0,j = sign (j)∆|j|1/(1−a), for |j|�L∗, where L∗ is arbi-
trary but finite. For distances larger than L∗ the density
is fixed, ρ∗ = 1−a∆ (L

∗/∆)−a. We define ρ∗ (and L∗) to
get, for large times, a standard-single-file dynamics (as
L∗�L), rather than a free-particle behavior. For interme-
diate times (to be found below), diffusion faster than the
standard-single-file regime but slower than free diffusion
is expected, reflecting the expansion process from dense
to dilute environments occurring around the tagged parti-
cle. To derive the scaling law for 〈|r|〉 in this regime, we
first translate the relation for ρ(L) into an equation for the
number of particles as a function of length, n∼ (ρ0L)1−a.
Then, we need to estimate the dependence of µ in eq. (2)
with a. This is done in the next section by deriving the
PDF for the tagged particle for normal diffusion in a
system obeying the density law in eq. (5). This analysis
finds µ(a) for any underlying dynamics because the under-
lying dynamics is not correlated with the density law.

The PDF of the tagged particle. – To derive the
PDF for a tagged particle in a normal diffusion system, we
start with the equation of motion for the joint N -particle
PDF (no inertia),

∂tP ({x}, t|{x0}) =D0
M∑

j=−M
∂x2jP ({x}, t|{x0}), (6)

where 2M +1=N , and {x}= x−M , . . . , xM . In the follow-
ing, we take x0,j =∆j (unless otherwise is explicitly
noted). The single-file nature enters through the system’s
boundary conditions,

[∂xjP ({x}, t|{x0})− ∂xj+1P ({x}, t|{x0})]xj=xj+1 = 0,
−M � j <M,

which simply means that the adjacent particles cannot
bypass each other. The solution for eq. (6) can be obtained
from the Bethe ansatz [36,37]. For this problem, the Bethe
ansatz gives the {k}-space, {k}= k−M , . . . , kM , integrand
of the Fourier transform of the solution (x→ k) [27],

P̂ ({k}, t|{x0}) = 1
N !

∑
p

e−
∑M
j=−M ikj(x0,j−xj(p))+D0tk2j .

Here, the index p stands for the p permutation of the N
particles’ indices, so the summation is over N ! permuta-
tions (e.g., xj(p) = xi, for a given p, and, −M � i, j �M).
The normalized joint PDF in {x}-space reads,

P ({x}, t|{x0}) = (4πD0t)−N2
∑
p

∏
j

e
−(xj−x0,j(p))2

4D0t .

To show that P ({x}, t|{x0}) is normalized to one, we
need to perform an N -dimensional integration over the
{x}-space with the restriction,
−∞� x−M � x−M+1 � · · ·� xM−1 � xM �∞. (7)

It is easily seen from the direct calculations for small
N values that the restricted integration can be replaced
by an unrestricted integration for each particle, i.e.,
−∞� xj �∞, j =−M, . . . ,M , when dividing by N !.
Each permutation in the expression for P ({x}, t|{x0}) is a
product of N integrals, each of which is normalized to one.
Thus, each permutation contributes a factor of 1/N !. As
there are N ! permutations, P ({x}, t|{x0}) is normalized
to one.
To obtain the PDF for the tagged particle, P (r, t|r0),

r≡ x0 and r0 = 0, we need to integrate out all the file
particles’ coordinates except for r, while obeying the
restrictions of eq. (7). This is done when separating the
integrals into left integrals and right integrals (relative to
tagged particle),

P (r, t|r0) =
∫ x−M+1
−∞

dx−M
∫ x−M+2
−∞

dx−M+1

. . .

∫ r
−∞
dx−1

∫ ∞
r

dx1

∫ ∞
x1

dx2 . . .

∫ ∞
xM−1

P ({x}, t|{x0}) dxM .

This 2M -dimensional integration fulfills eq. (7); the parti-
cles always keep their relative position. Similar to the
manipulation done in the calculations of the normaliza-
tion constant, we can change all the upper bounds in the
left integrals to r, and also change all the lower bounds in
the right integrals to r. Thus, P (r, t|r0) is given by,

P (r, t|r0)= 1
C

M∏
J=1

∫ r
−∞
dx−j

∫ ∞
r

dxjP ({x}, t|{x0}), (8)

where C is the normalization constant. Equation (8)
enables further analysis because it gives P (r, t|r0) as
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products of separate integrals,

P (r, t|r0) ∝
∑
p

e
− 1

r2
f

[r−r0(p)]2

×
M∏
j=1

∫ r
−∞
dx−j e

− 1

r2
f

[x−j−x0,−j(p)]2

×
∫ ∞
r

dxj e
− 1

r2
f

[xj−x0,j(p)]2
.

Here, for notation convenience, we define, rf ≡
√
4D0t.

(rf equals 〈|r|〉free for normal diffusion. As stems from the
calculations below, rf is the natural length scale in the
system.) For any permutation, the faith of each integral
over xj , with j > 0, is one of three possible outcomes
(asymptotic analysis):

1) When (r−x0,j)/rf → 0, the integral is approximated
by
√
π/2.

2) When (r−x0,j)/rf →−∞, the integral is approxi-
mated by

√
π.

3) When (r−x0,j)/rf →+∞, the integral is approxi-
mated by e

−Y 2j
2|Yj | , where, Yj = (r−x0,j)/rf .

The same three possible outcomes are obtained for any
integral over xj with j < 0, when switching the condition-
part of cases (2) and (3) above. For each permutation,
we need to count the number of integrals of each kind,
and then to sum over all permutations’ results. We
continue by firstly analyze P (r, t|r0) for small values of r.
Here, small r values means, |r|� rf . We define ordered
permutations as permutations in which all the positive
initial conditions are to the right of r and all the negative
initial conditions are to the left of r. For small r values,
there are (M !)2 such permutations: there are M ! internal
permutations of the left initial conditions andM ! internal
permutations of the right initial conditions, starting from
the “perfectly” ordered permutation, p= 1: x0,j(1) =∆j
for every j. All (M !)2 permutations of the “perfectly”
ordered permutation lead to the same result, as the
integrals in eq. (8) are separated. For small r, only cases 1)
and 2) are relevant for the ordered permutations, so each
ordered permutation gives a constant independent of r.
Note that the actual value of r0(p) is irrelevant: all the
“ordered permutations” contribute a constant, and the
summation over p can be replaced by the integral,

∑
p

e
− 1

r2
f

[r−r0(p)]2 ∼
∫ ∞
−∞

e
− 1

r2
f

[r−∆p]2
dp,

which is independent of r. This is a general result not
limited to the ordered permutations, or small r values:
the effect of an individual initial condition on the result
can be safely neglected in the thermodynamics limit of

N →∞ particles. The initial condition for the tagged
particle enters while counting type 3) integrals for
“not-ordered” permutations. Similar effect is shown below
in the calculations for large |r|.
We calculate now the 4M (M !)2 permutations in which

the initial conditions are not ordered. We choose m initial
coordinates from the left M initial ordered coordinates
and m initial coordinates from the right Mordered initial
coordinates, and switch between the two sets. For each
switch, there are the “standard” (M !)2 internal permuta-
tions all lead to the same result (to be calculated for each
switching protocol). We distinguish between two choice
types: the chosen coordinate is within the distance rf from
r or not. So, there are 4 possibilities for each switch. The
contribution from switching an initial coordinate within
the distance of rf from r with an initial coordinate within
the distance of rf from r from the other side gives approx-
imately the result of the ordered permutations discussed
above, i.e. the result is independent of r. The contribution
from permutations in which both initial coordinates that
are switched are more distant than rf from r (in opposite
direction) vanishes. The important case is when an initial
coordinate within the distance of rf from r is switched
with an initial coordinate from the other side (right-left
switch or left-right switch) that its distance to r is larger
than rf . For such “mixed” cases, the overall contribution
is proportional to

P (r, t|r0)∝ (M !)2
ρ0rf∑
z=1

ρ0rf−z∑
q=1

SzSq

×
z∏
j=1

e−[Yj(p)]
2

|Yj(p)|
q∏
i=1

e−[Y−i(p)]
2

|Y−i(p)| . (9)

In the upper bounds of the summations in eq. (9),
we translated distances into particle numbers using the
density. Also, we define in eq. (9) the combinatorial factor,

Sz =

(
M − ρ0rf

z

)(
ρ0rf
z

)
, which gives the number of ways

to perform the switching protocol for z coordinates. Equa-
tion (9) has two combinatorial factors, one for switching
right initial coordinates within the distance rf from r with
distant left initial coordinates, and the second for switch-
ing left initial coordinates within the distance rf from r
with distant right initial coordinates. Each combinatorial
factor is associated with a product of Gaussians resulting
from the integrations of case (3). In the thermodynamic
limit, M is much larger than rf , and the symmetric term,
z = q= ρ02 rf = ρ0

√
D0t dominates the sum in eq. (9). So

we have

P (r, t|r0)∝ (M !Sρ0√D0t)2
ρ0
√
D0t∏

j=1

e−[Yj(p)]
2−[Y−j(p)]2

|Yj(p)||Y−j(p)|

� (M !Sρ0√D0t)
2 e−ρ0

√
D0t[Y

2
++Y

2
−+log |Y−||Y+|],
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where Y± =
r±rf
rf
. In the second line, we approximate the

Gamma-function by the Stirling formula, and used the fact
that the all initial coordinates in the Yj ’s are more distant
than rf from r. Thus, the leading term for the PDF of the
tagged particle is given by

P (r, t|r0)∝ e−
r2√
4Dt , (10)

with a logarithmic correction in the exponent. For large
values of r, |r|� rf , there are always ρ0r initial coordinate
to the left of r (say r > 0). This gives rise to a correction

term, e−
ρ0(|r|−

√
4D0t)

3

4D0t , which is multiplied by the result of
any permutation. The switching analysis, however, is the
same as discussed above. Thus, the tagged particle’s PDF
for |r|� rf reads,

P (r, t|r0)∝ e−
r2√
4Dt
− ρ0(|r|−

√
4D0t)

3

4D0t .

The correction term is important only when |r|� 3rf , but
the PDF at such distances is of the order of O(10−6).
To obtain the tagged particle PDF for less dense

systems, we note that in the above calculations, the fixed
particles’ density condition entered in the upper bounds
in the sums in eq. (8). For less dense systems, the upper
bound in eq. (8), ρ0rf , is replaced by (ρ0rf )

(1−a) because
the basic length scale in the underlying Gaussians is still
rf . The result for less dense systems reads,

P (r, t|r0)∝ e−
(r/ρa0 )

2

(4Dt)(1+a)/2 . (11)

Equation (11) is the tagged particle’s PDF (to a leading
term) for any r and any particles’ density that obeys
eq. (5).

〈|r|〉 for the tagged particle in less dense systems.
– The scaling law for 〈r2〉 calculated from eq. (11) reads,
ρ20〈r2〉 ∼ (ρ20D0t)(1+a)/2. This relation can be written as a
general relation,

〈|r|〉 ∼ ρ(a−1)/20 (〈|r|〉free)(1+a)/2. (12)

Equation (12) is equivalent of setting µ= 1
1+a in eq. (2),

resulting in,

〈|r|〉 ∼ 1

n1/(1+a)
〈|r|〉free. (13)

Equation (13) emphasizes the fact that the particles in the
covered length hinder the diffusion of the tagged particle
less and less as the system itself becomes less dense.

Equation (12) explains the relation, 〈|r|〉∼
√
ρ−10 〈|r|〉free,

obtained for a= 0: this relation is a direct result of the
fixed density condition imposed in a standard single file.
Equation (12) also generalizes it to any density law,
and predicts a smooth interpolation between single-file
diffusion and free-particle diffusion for any underlying
dynamics eq. (12) enables a clear cut identification of the
contributions to 〈|r|〉 from the particles’ density law and

Fig. 1: Stochastic simulations of single-file dynamics. A log-
log plot of the mean square displacement of a tagged particle
(middle particle) in a single file of N particles as a function of
time. The initial particles’ density obeys eq. (5). The size of
the system is a constant for all curves (4000 lattice spacing),
and the actual value of N depends on the initial particle’s
density. One thousand runs were performed for each value of a.
The input value of a is indicated for each curve together with
the value of the fit-power denoted by γ. Convergence to the
estimation of the scaling analysis is observed for all the curves.

from the underlying dynamics. For the particular cases of
normal and CTRW dynamics, we find from eq. (12),

〈|r|〉 ∼


ρ−10 (ρ

2
0D0t)

1+a
4 , normal diffusion,

ρ−10 (ρ
2/β
0 D̃0t)

β(1+a)
4 , CTRW.

(14)

(For free diffusion, ρ0 in eq. (14) is set to unity.) These
relationships are valid up to the exit time from the
interval L∗, ρ20D0t∗ ∼ c(ρ0L∗)4/(1+a), for normal diffusion,
and ρ

2/β
0 D̃0t

∗ ∼ c1/β(ρ0L∗)4/[(1+a)β], for CTRW, where
c= (1− a)2(1−a)/[(1+a)a]. For times larger than t∗, a
standard-single-file scaling for 〈|r|〉 is expected, with a
constant density, ρ∗ = 1−a∆ (L

∗/∆)−a. For example, taking
ρ0L

∗ = 103 and a≈ 1/3, the scaling law in eq. (14) spans
three orders of magnitude in the dimensionless time
parameter, ρ20D0t. Results from simulations for normal
diffusive hard rods confirm eq. (12) (fig. 1). Note that
it stems from eq. (14) that a process with 〈|r|〉 ∼ t1/4
can be a consequence of three different scenarios: 1) a
free-particle (ρ∼L−1) CTRW process with ψ∼ t−1−1/2,
2) a single-file process (ρ∼ ρ0) with an exponential
microscopic WT-PDF, 3) a combination of a CTRW
process (ψ∼ t−1−β) and a density that decays with the
distance (ρ∼L−a), such that β = 1

1+a .
Lastly, note that when the tagged particle has a different

underlying dynamics than all the other particles in the
file, it adopts the dynamics of the file, eq. (12), unless its
underlying dynamics is slower than eq. (12), and in this
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case, a free-particle scaling law is observed. For example,
consider a case where the tagged particle’s underlying
dynamics is a CTRW, ψ(t)∼ t−1−β , and the single-file
particles have a single exponential WT-PDF. Only when,
β � 1+a2 , 〈|r|〉= 〈|r|〉free. For, β > 1+a

2 , the tagged particle
follows the single-file evolution, and 〈|r|〉 is given by the
first line on the right-hand side of eq. (14).

Concluding remarks. – This letter deals with the
dynamics of hard rods in an infinite 1D system. The first
main result in this letter is the general scaling law for the
mean absolute displacement for a tagged particle, 〈|r|〉 ∼
〈|r|〉free/nµ. Here, 〈|r|〉free is the result for a free particle
in the studied system, n is the number of particles in the
covered length, and µ= 1

1+a for a system with an initial

density law, ρ= 1
∆ (L/∆)

−a, 0� a� 1. The factor 1/nµ is
associated with the demand for cooperation from the hard
rods in the covered length. The scaling law for 〈|r|〉 enables
deriving a general estimation for 〈|r|〉 for the tagged parti-
cle for systems with any particles’ density and any under-

lying particles’ dynamics: 〈|r|〉 ∼ ρ(a−1)/20 (〈|r|〉free)(1+a)/2.
This estimation is the second main result in this letter.
It shows that varying the particles’ density law leads to
a smooth interpolation between a “standard”-single-file
scaling and a free-particle scaling for the mean absolute
displacement. Specific results for normal diffusion and
CTRW dynamics are given in eq. (14), where it was also
shown that for normal diffusive hard rods, the tagged
particle PDF is always a Gaussian (to a leading order),
eq. (11), for any particles’ density law that obeys eq. (5).
Finally, it was shown that when the tagged particle diffuses
according to a different underlying dynamics than all the
other particles in the system, it adopts the dynamics of
the other particles in almost all cases. Otherwise, a free
diffusion scaling is observed.
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