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Preface 

 

In this book, we study several stochastic processes that are new variants of known problems: the 

dynamics of a random walker in heterogeneous environments and the dynamics of many 

interacting walkers in a quasi one dimensional system (a channel). We present various methods 

of solving these systems; several of these are new and exciting and should supply ways of 

solving related problems. We show that these processes exhibit new and interesting behaviours.    

     In the variant of a random walker in a diverse environment, we address the dynamics of an 

anomalous walker in a constantly changing environment. Our result shows that when the 

anomaly has two different origins, namely, two different mechanisms, they compete each other, 

and eventually only one mechanism for anomaly wins.  

   In file dynamics (sometimes called single file dynamics or the exclusion process), we study 

here several new files. Firstly, we find that the dynamics of heterogeneous walkers have a unique 

scaling law for the mean square displacement (MSD) of a walker in the file: MSD~t
μ 

where μ=(1-

)/[2/(1+a)-],  is associated with the heterogeneity in the system and  the power a is associated 

with the scaling law of the initial conditions of the walkers. This scaling law is very different 

than the known behaviour in the basic Brownian files, where, MSD~t
1/2

.  

    We then show that anomalous walkers in a file are richer in behaviours. We solve both files of 

synchronized anomalous walkers and independent anomalous walkers. We show how the 

anomaly influence on the dynamics that are naturally slow in such a system, and moreover, that 

independent anomalous walkers in a file actually form clusters defining a phase transition.   
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    We think that the results in this book can help both mathematical scientists in biology, 

chemistry and physic, since the derivation of the results are rigorous and new, and the results are 

important and original, yet this book can also help experimentalists in these fields, since the 

results are applicable for many systems. The processes studied in this book are based on papers 

that we have written in the years 2008-2011.    

 

Ophir Flomenbom,        Spring 2011  
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I. A single walker in rich environments 

 

 

 

I.a. Introduction for walks in heterogeneous environments  

The statistical properties of random walks have long been used for explaining processes in 

physics, chemistry and biology [1.1-1.15]. For example, the motion of molecules in solution or 

in gas phase is important in chemistry when describing reactions [1.2, 1.3], and in biology when 

describing biological processes in living cells [1.4, 1.15]. Diffusion is also used for describing 

the properties of glassy materials in physics [1.7]. Extensions of diffusion models are also 

common; for example, diffusion is used in describing dynamics of energy of molecules [1.3], the 

price of stocks in the stock exchange [1.16], and so on.  

     Among the basic properties of a random walker is the scaling of its effective jumping time 

probability density function (JT-PDF) for individual jumps; this function,     , determines many 

of the important statistical quantities of the random walk, like the scaling of mean square 

displacement (MSD) with time, the propagator of the process, and so on [1.2-1.9]. For example, 

when each microscopic jump of a symmetric random walker is taken from an exponential JT-

PDF with a rate k,           , the MSD of the random walker is proportional to the time the 

process has been going on,       . This is the well-known diffusive behavior (Brownian 

motion, e.g. [1.1-1.9]), and the proportionality constant   is the diffusion constant (and is 

proportional to k). In a continuous model with a coordinate x, the Brownian dynamics follows 
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the diffusion equation for the PDF for staying at point x at time t,       ; this equation follows, 

                   . Indeed, the diffusion equation has the standard scaling for the MSD, 

      .   Nevertheless, many processes in condensed phase take place in heterogeneous 

environments, and this affects the equation of motion (in a discrete form or a continuous form), 

and consequently the standard linear scaling of the MSD with time is not observed. A model for 

such a process is a diffusion process composed of diffusion with a diffusion coefficient that 

changes randomly each microscopic jump; the equation of motion is an average over all the 

random values of the diffusion coefficient:                         . The discrete 

counterpart of this model, a random walker in a heterogeneous system, is defined when taking 

the value of k to depend on the local environment, such that it is also a random quantity taken 

from a particular PDF p(k), e.g. [1.9].  We present this model in the next chapter and show that 

indeed this simple model for a continuous time random walker in a random environment can lead 

to a multi-exponential form for     . Moreover, for certain choices of p(k), this model can lead 

to slow diffusion, i.e. the random walker’s mean square displacement scales sub-linearly with 

time, and      decays as an inverse power law with an infinite mean, i.e.           ,     

 . This anomalous behavior is termed subdiffusion. This result is indeed known in the literature 

of random walks and stochastic processes, e.g. [1.7], and was related during the years with 

process in chemistry, biology, and physics, such as, diffusion in glassy materials [1.7], processes 

in fractals [1.5, 1.7, 1.9], reactions [1.2-1.4], processes in biological systems [1.2-1.4], etc. 

     Here, we analyze a previously un-described variant of a random walk in a random 

environment: a symmetric anomalous random walker in a random environment. (The analysis is 

based on our work in this field [1.17]). Specifically, the underlying microscopic jumping times 
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are distributed as an inverse power law with an infinite mean, parameterized with a power   and 

a rate k:  

       
 

         . 

The environment, i.e. the distribution in the rate k,     , follows a power law function with a 

power  , 

     
   

  
 
  

 
 
 

.  

     We calculate the effective JT-PDF for individual jumps of such a system,     , obtained 

when averaging        with     , 

                  
 

 
, 

and show that in this system      exhibits a transition in the rule for the power that governs the 

scaling of     .      always decays as a power law with an infinite mean, 

          ,         ,  

yet the formula for        changes in a critical point,       . Importantly, this is an 

indication for a change in the mechanism that controls the dynamics. When    is larger than 

   , 

      ;      ,  

meaning that the collective effect of the environment is the mechanism that controls the 

dynamics. In this regime, the collective effect of an environment made of many slow regions 

leads to a slower subdiffusion than the subdiffusion due to the individual jumps. When    is 

smaller than    , 

     ;      ,  
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and the slow individual jumps control the dynamics. Within the model solved here, the 

phenomenon is independent of the dimension of the system, but vanishes when the power   is 

distributed also, where in such a case, very slow dynamics are seen.  

   We suggest several systems that are possibly related with the reported phenomenon: dynamics 

on a network made of heterogeneous fractals, dynamics of a file of particles in a channel, and 

dynamics in crowded biological cells. These results are important in applications, yet also when 

studying anomalous processes mathematically, since its indicate that there are (at least) two 

distinct models that show anomalous behavior and these models compete each other. We also 

suggest several extensions of the current work; for example a process with dynamical 

environment such that   is a process. We think that scientists in mathematical physics and 

mathematical chemistry can find these results important, yet also scientists in biophysics and 

chemistry and physics dealing with applications that exhibit anomalous dynamics. 

   This chapter is presented in three main paragraphs: the introduction, part I.a., part I.b. that 

presents the known model for an exponential random walker in a random environment leading to 

slow diffusion, and part I.c. presenting the new variant of this model, where an anomalous 

walker moves in a random environment, indeed showing a competition among different 

mechanisms for anomaly. Part I.c. also considers several extensions of the new model and 

presents a discussion about the results, and concludes this chapter.  
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I.b. A normal walker in rich environments 

A well known result in stochastic processes expresses the scaling of the MSD,     , of a 

normal diffusive symmetric random walker as a linear function of the time,        .  In this 

work, the sign ~ symbolizes asymptotic scaling. The diffusion coefficient,  , can be related to 

properties of the system: the temperature (or energy) of the solution (   , where    is the 

Boltzmann constant), the viscosity of the solution ( ), and the particle’s size (  ); the most 

known scaling is the Einstein-Stokes relation,    
   

   
 e.g. [1.3, 1.6]. The linear scaling of 

     with time is pretty general: it holds in any dimension and may hold also when the 

environment is heterogeneous (while adjusting the value of   so it reflects average properties of 

the environment). Yet, there are cases in which the environment leads to a very slow diffusion, 

locally, and when there are many such slow local regions, the scaling for         can be 

slower than a linear function of t. This is termed a subdiffusion behavior. A simple microscopic 

model for subdiffusion originates from a combination of a normal diffusive random walker with 

an exponential JT-PDF for individual jumps [1.9], 

            ,                  (1) 

and a random environment that leads to a distribution in k with many small ks; namely, the value 

for k is a random quantity, and is drawn in each transition from a PDF,  

     
   

  
 
  

 
 
 

,      ,                  (2) 

and k is between zero and   , for a finite maximal rate   . (The fastest timescale in the system, 

namely, the largest rate, is finite.). This model of the random environment is also termed a 

fluctuating environment, a changing environment, or a heterogeneous environment.    
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For this model, the effective JT-PDF of the random walker,     , defined with the relation, 

                  
 

 
     

   
 ,               (3) 

decays as a power law, e.g. [1.9], 

     
  

          ;       .             (4) 

A consequence of a heavily tailed      is that the scaling for      is sub-linear in time, e.g. 

[1.7],  

            
 

. 

    is a parameter. This result for the MSD is obtained from the general scaling-law for the MSD 

in a CTRW:            
       

       
, where                  

 

 
 is the Laplace transform of the 

function g(t). Note that the Laplace transform of the power law      in Eq. (4) follows, 

             
 

. This model shows how the environment can affect the diffusion, leading to 

subdiffusion. Here, the reason for the subdiffusion is that there are many regions in which the 

local rate k is very small. As    , the diffusion becomes normal.  

   The continuous counterpart of this model is written in terms of a distribution of diffusion 

coefficients,                        , with the following relation of the MSD,  

                  
 

 
, 

where the average         is taken over all possible realizations of the random values of the 

diffusion coefficients. The quantity            is calculated from the integral, 

                       
  

 
    , for large values of  , since D is  as k and so it is taken 

from Eq. (1), and      is as      in Eq. (2). When using this result in the equation for the MSD 

once sees,         , similar with the result of the discrete counterpart.  
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   Indeed, there are other models with an anomalous result for the MSD, such as due to special 

geometries or special types of interactions of the diffusing molecules. Nevertheless, the current 

model is simple and clear, and presents a reference basic model for the occurrence for anomalous 

dynamics and a power-law JT-PDF. We use an extension of this model in the next chapter for 

studying the diffusion of an anomalous particle in a heterogeneous environment.   

 

I.c. An anomalous walker in rich environments   

I.c.1. The model and its solution 

Here, we extend the known simple model for normal diffusion in a random environment, and 

introduce a model that involves subdiffusion in a random environment. We consider a model in 

which the jumping times for individual jumps are distributed according to a power law PDF, 

with a particular scaling power  , 

             
 

                   ;               .     (5) 

In each jump the parameter k is drawn from the PDF in Eq. (2); namely, the random environment 

is modeled in the same way as before. The calculations compute the effective JT-PDF found 

from the integral equation,  

                  
 

 
. 

     represents a process that is renewal, since the random times are drawn independently each 

jump, in a heterogeneous environment, since the environment in modeled with     . The 

solution for       in the current model follows,  
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.         (6) 

For large    , the integral,    
    

          
   

 
, is approximated with the sum of three integrals, 

         
  

 
  

    

        
  

  

  
         

   

  
.      (7) 

In Eq. (7), we take the constant    as a small number and the constant    as a large number 

(smaller than    ). The first integral in right hand side (RHS) of Eq. (7) is correct up to order 

      and the third integral in the RHS of Eq. (7) is correct up to order        . The second 

integral in the RHS in Eq. (7) is always a positive constant, and we denote it by   .  

Equation (7) has the solution, 

  
  

   
      

             
     

  

     
.        (8) 

When      , 

  
  

   
                        .    

For large t, the outcome of the integral  , Eq. (7), depends on the sign of      : 

 

  

 
 
 

 
 

  

   
    

  
     

     
     

              

     
     

     
     

 . 

Consequently, the expression for      obeys, 
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Equations (9.1) and (9.3) are correct for large     independent of      and  , where exactly in 

the point      ,          obeys Eq. (9.2). These equations form the main mathematical 

results in this chapter.    

Numerical simulations.- Equations (9) predict a transition in the rule for the power that governs 

the scaling law of the effective JT-PDF for a subdiffusive random walk in a random 

environment. This occurs when      . It is very simple exemplifying this transition in a 

simulation. Here, we perform kinetic Monte Carlo simulations. We first draw a random number 

for determining the parameter values of the JT-PDF and then use this in the JT-PDF and draw a 

random jumping time. This procedures is performed over and over again (10
7 

random times are 

drawn for each curve). The way random numbers are drawn here is by using the typical way for 

generating random numbers from a power-law PDF: given the PDF in Eq. (2), we generate a 

random rate when using the formula,      
 

   , where   is a random number distributed 

uniformly in a unit interval. Figures 1-3 present the results from these simple numerical 

simulations. Each figure shows result for the average JT-PDF      from a particular simulation 

specified with particular values of        . We take for  ,                 , and each value of 

  is conjugated with two different  s, one that leads to Eq. (9.1) and another that leads to Eq. 

(9.3);              for         shown in Fig. 1,             for        shown in Fig. 

2, and              for         shown in Fig. 3. The transition is apparent in all cases.  
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        Fig 1 A log-log plot of the effective JT-PDF versus time (dashed-dotted symbols), obtained from 

kinetic Monte Carlo simulations with 10
7
 events. In each panel, shown are also two curves that 

correspond to power-laws, t
-1-µ

, with different values for µ (      and    ). The right panel 

(                 ) shows that the effective JT-PDF scales as the input JT-PDF sincen       . 

The left panel (                  ) emphasizes the transition, showing that the scaling of effective 

JT-PDF is determined by the environment, when      . In the inset, ‘simu.’ means simulations’ 

results. The parameter    in Eq. (2) is set to unity. The noise at large t in the curves obtained from the 

simulations is expected for results from stochastic dynamics (at large t).   

 

 

 

 

 

 

 

 

Fig 2 Results from simulations are presented in the same format as in Fig. 1, with different values for 

                     (=   ). Note that when the environment controls the dynamics (left panel), 

converge is asymptotic with time.  
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Fig 3 Results from simulations are presented in the same format as in Fig. 1, with different values for 

                     (=    ). Again, we note that when the environment controls the dynamics (left 

panel), converge is asymptotic with time.   

 

We note that in the cases where the collective effect of many slow regions determines the scaling 

of the JT-PDF, the convergence is asymptotic. This is of course an expected behavior. Note also 

that this transition in the scaling of the effective JT-PDF is independent of the dimension of the 

system, since the effective JT-PDF for individual jumps is independent of the dimension of the 

system. The effective JT-PDF depends only on the input local JT-PDF for individual jumps and 

the heterogeneity in the system, and both, in this model, are independent of the dimension of the 

system.   

 

I.c.2. Extensions, physical explanations, and applicability 

In the previous part, we showed both mathematically and numerically that an anomalous random 

walker in a diverse environment can diffuse slower than the anomaly for individual jumps when 
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the environment is diverse. What about a random environment that leads to a distribution in the 

power   in Eq. (5)? In this case, the environment affects also the value of the power   since, for 

example, the system has special geometries that are distinct among the sites in the lattice. For 

such a system, we find that a transition in the scaling law of      is not observed, with or 

without distribution in the parameter k, as long as the average over the power   is performed in 

the range,       (here,     ). For showing this, we choose two functions as the PDF of 

the power  . First, when choosing, 

              ;           ,        (10) 

straightforward calculations give, 

      
 

          
 

          
 
   

,         (11.1) 

and, 

     
  

         
 

         
 
   

,         (11.2) 

before and after an additional averaging with      is done, respectively. When choosing, 

            ,      ,         (12) 

calculations show that, 

     
 

       
             ,        (13.1) 

and, 

     
  

               
    

 
,          (13.2) 

before and after an additional averaging with      is performed, respectively. Note that the limit 

    should be taken in Eqs. (11), since the results in Eqs. (13) are obtained when exploiting 

the fact that most of the probability      is located near one for,             .  
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     The above calculations were performed when averaging over the power   and then over the 

parameter  . We can reverse the order of the averaging, and first average over the parameter k 

and then over the  s. This order of averaging requires two different integration regimes, as can 

be seen from Eqs. (9). One must distinguish between the following two different random 

environments: in one set of random systems,   is in the range,         , whereas in the 

other set of random systems   is in the range,         . When starting with Eqs. (9) and 

performing the restricted averaging with             , one sees only one result for      in 

both averaging regimes,      
  

        . That is, the transition disappears for this choice of     . 

Restricted integrations are important when averaging with          . Here, when   is 

integrated in the range      and 1 one sees, 

     
  

     
   ,           (14.1) 

yet when   is integrated in the range   and      one sees,  

     
  

     
   

 

              .          (14.2) 

Thus, when the environment allows any value of the power  , the value of   cannot affect the 

scaling of     , and the transition is not observed. The transition disappears because there are 

not so few local JT-PDFs with slower exponent   than the exponent     related with the 

environment. Nevertheless, when the range of allowed   values is correlated with the value of  , 

different scaling in      can be obtained depending on the shape of      and on the integration 

range for  . This is an artificial transition because one must prepare the system to fulfill the 

condition on  , and this special preparation leads to a different scaling in     . The physical 

origin of this transition is the same as in the fixed   case.   
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     How can we interpret the reported phenomenon? Looking on Eq. (9.1), we note that it scales 

as Eq. (4). Also, Eq. (9.3) scales as Eq. (5). Namely, the effective JT-PDF follows the slower 

mechanism: anomaly resulting from individual jumps or resulting from the slow environment. 

We also conclude that the local subdiffusive dynamics competes with the anomaly resulting from 

the heterogeneity in the system. When local jumps are very slow compared with the anomaly 

originated from the environment (     ), the diffusion does not depend on the 

environment’s heterogeneity. However, when the environment becomes very slow (     ), 

the individual transitions are, effectively, exponentially distributed from the environment 

‘perspective’, and only the exponent of      enters in the scaling of      like the average over 

       is performed with an exponential JT-PDF for individual jumps.     

     What are the implications of the reported transition? There are several systems that can be 

described with this model. For example, a continuous time random walker in a branched lattice. 

The branches are fractals with the same spectral dimension (the spectral dimension determines 

the power   [1.10]), but differ in conductivity; namely, each fractal is characterized with a rate 

for individual jumps drawn from     . Here, the statistical properties of the random walker can 

be tuned when adjusting, for example, the distribution of the fractals’ conductivity while keeping 

fixed their spectral dimension. 

     Looking beyond a single random walker model, we predict that the transition reported here 

will be found also in a renewal file of many sub-diffusive hard spheres in a quasi one-

dimensional channel (where collisions are elastic) [1.11-1.14]. In the renewal sub-diffusive file, 

all particles attempt a jump together and the JT-PDF for individual transitions obeys Eq. (5) with 

a random diffusion coefficient k drawn from the PDF in Eq. (2) for each jump. We conjecture 
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that a transition in the scaling of the MSD of a sphere in this file will be observed when the 

collective effect due to the PDF in diffusion constants leads to a slower dynamics relative to the 

anomaly related with the heavily tailed JT-PDF for individual jumps. As shown here, these two 

factors are not additive, yet compete each other. The next chapter study anomalous files. 

     The last example that we consider here is diffusion in living cells [1.13]. The cell content is 

dense, and diverse (the density fluctuates in space and time). It is well known that crowding is 

observed in the cell due to its high density content; that is, slow dynamics are observed. In what 

follows, a model that takes into account both the slow individual jumps and the heterogeneity in 

the environment is considered. This model exhibits the phenomenon reported in the previous part 

of this chapter, and may be found constructive in the analysis of the dynamics in living cells. It 

can be related for any entity that diffuses in the cell, say, a protein or DNA molecule. 

     We consider local dynamics governed with an exponential JT-PDF, 

             .          (15)   

The rate   (the local diffusion constant) is parameterized with an energy barrier, and obeys the 

Kramers relation for a reaction rate, e.g. [1.3], 

     
     .                        (16) 

Since the local composition of molecules that form the local environment changes across the 

system, the energy barrier   is distributed; here, we choose the following PDF,     , for 

describing the distribution in  : 

     
 

  
      .                     (17) 

This model, Eqs.(15)-(17), gives a power-law JT-PDF: 



I.c. An anomalous walker in rich environments   

18 
 

                         
  

          ;     
  

  
.    

The parameter    is related with the temperature, and so it is a constant in the cell environment. 

The parameter    can be related with the local ‘friction’ and thus can be distributed on the level 

of the cell. The parameter    determines the scale of the local barriers. Although, it can be argued 

that both    and    can be distributed,    is more likely not to change much in a changing 

environment, since the nature of the interactions between molecules in the cell is pretty much 

similar regardless of the local density of the molecules, and that the local density affects mainly 

the local friction, namely, the prefactor,   . When modeling the distribution in the    with a PDF 

of the form of Eq. (2), i.e., 

      
   

  
 
  

  
 
 

,      ,           (19) 

we find a model for subdiffusion in a diverse environment that can lead to the transition 

predicted in Eqs. (9), 

                          

 
 
 

 
      

    
     

         

     
        

     
    

     

 .                                     

      
      
      

         

Thus, crowding can affect the dynamics in the cell in more than one way; first, it is the reason for 

an effective anomalous dynamics for individual jumps since the dynamics are possible only 

when many ‘microscopic’ slow events occur, and then, it may affect the scaling of the effective 

JT-PDF, when there are enough ‘very dense’ local environments (causing a distribution in   ). 

Finally, we note that although the anomalous behavior can be terminated with a threshold in 

time, the above analysis refers to a situation in which the anomaly is observed in a time window 

important to the biological activity.      
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Concluding Remarks.- In this chpater, we considered a subdiffusive continuous time random 

walker (characterized by a power  ) in a heterogeneous environment (characterized with a power 

 ). We showed that this system exhibits a transition in the scaling law of its effective JT-PDF, 

    .      decays as a power law,      
 

    , yet   obeys two different formulae. When 

      ,    , yet when       ,       . The transition in the scaling of      

reflects the competition between two different mechanisms for subdiffusion: subdiffusion 

resulting from the heavily tailed JT-PDF for microscopic jumps, and subdiffusion resulting from 

the collective effect of an environment made of many slow local regions. These two different 

mechanisms for subdiffusion are not additive, yet compete each other. The reported transition is 

dimension independent, but disappears when the power   is also distributed in the range, 

     . We introduced several systems that can show this phenomenon and thus can be 

related with, e.g. dynamics of a file of hard particles in a channel, and diffusion in dense living 

cells.   

   Many extensions of the mathematical model presented here are possible. We present one such 

possibility for concluding this chapter. The model is an anomalous walker with a power   and a 

random system modeled with     . The new thing here is that the power   is a process also; say, 

for simplicity, the power has two different values   , with independent dynamics. We expect 

seeing interesting behaviors of this model depending on the dynamics in the powers   . Such a 

model can reflect a situation where the properties of the molecule under investigation are 

controlled externally, and this is the reason for the dynamics in   .      
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II.a. File dynamics  

II.a.1. Introduction 

The basic process of file dynamics is a diffusion problem of N Brownian hard spheres in an open 

quasi one dimensional channel. (Here, a Brownian hard sphere is a normal random walker that 

interacts with the other first adjacent walkers like elastic interactions.) All the particles in the 

channel have the same diffusion coefficient D. The limit in which the system’s length, L, goes to 

infinity is taken, along with the demand the particles’ density, ρ=ρ0=N/L, is on average a 

constant, so N=L/Δ, for a microscopic length scale Δ. This process is sometimes called single file 

dynamics or an exclusion process. Here, it is simply termed file dynamics.  

   The statistics of a given particle in the file, termed the tagged particle, are known for the simple 

file since 60s (1960s) [2.1-2.9]. (Hereafter, the tagged particle is identified with the coordinate r, 

and is the middle particle in the file, where N is odd). The probability density function (PDF) of 

the tagged particle is asymptotically a Gaussian in the coordinate r, with a variance (termed also 

the mean square displacement, MSD) that scales as the square root of time, 

                
 

      
      

 

    
    ;        .                       

This result is special since the MSD scales like the square root of the time rather than linear with 

the time, like in Brownian motion. The PDF           was first obtained in Ref. [2.2] in the 

mathematical literature, for stochastic dynamics. In the physical community, file dynamics were 
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studied with several approaches, including mappings [2.7-2.9], correlation function calculations 

[2.6, 2.14], and numerical simulations [2.10-2.14]. Recent studies provided complementary 

characterizations of the dynamics in the file. For example, studies showed that the file’s motion 

is correlative [2.15], the fluctuations in the particles’ density obey a diffusion equation [2.6, 

2.15], the velocity auto-correlation function has a negative tail [2.14], and that a file of spheres is 

normal in higher dimensions [2.6]. For a deterministic file with momentum exchange upon 

collisions, the tagged particle’s PDF is also a Gaussian, yet with a variance that scales like the 

time [2.3]. File dynamics has also been associated with monomer dynamics in a large liner 

polymer: both systems share a similar scaling law for the mean square displacement of the 

tagged particle [2.23, 2.28].   

     File dynamics has attracted a lot of attention in recent years (since the 1990s) in the context of 

diffusion within confined structures [2.24-2.30]. Examples include diffusion within biological 

and synthetic pores, and in porous materials, of water, ions, proteins, and organic molecules 

[2.24, 1.15]. Diffusion along 1D objects, such as the motion of motor-proteins along filaments 

[1.15]. And even in the context of conductance in nano-wires [2.31].  

Still, in many of these real-world systems, one, or several, of the basic conditions that 

define the basic single file process can break down. For example, real-world systems are finite, 

and this affects the results, as a steady state regime is seen [2.20]. Other modifications useful in 

describing real-life problems include files that have particles that are passing each other with a 

constant probability upon collision [2.16-2.19], or files that have particles that interact with the 

channel and are subject to an external (say, periodic) field [2.12].  
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In this chapter and in the next one, we present several new files that we studied in a series 

of recent papers [1.12-1.14, 2.32]: heterogeneous files, renewal-anomalous-heterogeneous files 

and anomalous files of independent particles. In each case, we present solutions for the file both 

using mathematical calculations and numerical simulations. Each case exhibits interesting 

behaviors that are richer than that of a basic file and of files mentioned above. In each case, we 

relate the model with possible real-life systems. This particular chapter deals mainly with files 

that have normal dynamics. 

 

II.a.2. Definition of normal heterogeneous files   

Heterogeneous files are files that allow both distributions in diffusion coefficients and in the 

initial density of the particles. Namely, the initial particles’ density law scales with the distance   

from the origin like, 

            
   ;                  .     (1) 

Indeed,      in Eq. (1) is the initial density of the file, where the particles are initially positioned 

at, 

x0,j=sign(j)∆|j|
1/(1-a)

,  

for |j|≤M, N=2M+1. Consequently, the initial number of particles   as a function of the length   

obeys,           . Among the possible realistic choices for a particle-distance law (e.g. an 

exponential, a Gaussian, or a power-law), the one that affects the dynamics is a power-law, 

where this is a conclusion from our results and calculations presented in this chapter.  

   In addition with an initial distribution that is not fixed, the particles’ diffusion coefficients are 

distributed according to a PDF; here, we choose, 
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,           ,      (2) 

where   is the fastest diffusion coefficient in the system and is finite. Again, we show that      

is a limiting distribution in the sense that only when there are many small diffusion coefficients 

around the origin, the heterogeneity affects the dynamics of the particles in the file, where 

otherwise the results of the basic file are seen with an effective diffusion coefficient.   

 

II.b. Scaling laws for heterogeneous files 

II.b.1. Scaling laws for simple files 

One of the fundamental results in transport processes states that the particle’s mean square 

displacement for free diffusion (i.e. the Brownian motion: a single particle random walk in an 

unconfined geometry without traps) is linear in time (for any dimension):             , e.g. 

[1.1]. This scaling is equivalent with the square root scaling of the average of the absolute 

displacement with the time,               . For hard spheres in a channel, a slower 

propagation rate for a tagged particle is expected since for reaching a net distance  , the file’s 

particles (in the relevant direction) must ‘cooperate’, and all move in the direction of the 

propagation. Namely, the tagged particle’s evolution is a result of a cooperative motion of the 

file’s particles. We use these arguments in deriving scaling laws for the mean absolute 

displacement (MAD) in a simple file. We start when choosing           for the natural length 

scale in the system. Then, we compose the argument of the scaling function from both  

         and      where   is the number of particles in the covered interval, and µ is an 

unknown power. We set the scaling function not a decreasing one, since when increasing the 
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number of particles that should cooperate, it is harder achieving cooperation from all of the 

random walkers. Thus, we write, 

          
         

  
 .   

          is the upper bound on the diffusion for the tagged particle, so for    ,        

        . Thus, we need to take a linear scaling function, 

       
 

           .       (3)     

Note that   is a function of       and not of          , since the number of particles in the 

actual covered distance is counted. Now, for the standard file dynamics, the particles’ density is 

fixed, and    , and the MAD follows ,       
 

         
       , and consequently,  

                             .          (4)  

For obtaining the known scaling law for a standard single file,    , so the general scaling law 

for the mean absolute displacement of a tagged particle in a system of hard spheres with a 

constant density follows,    

      
 

 
         .       (5) 

Note that   is a positive number when the density is not fixed and is bound from above with 

unity, since this is the result of a constant density file (we consider density laws that have a finite 

maximal value). Since Eq. (5) is for a file with a constant density,     , we find: 

                   .       (6) 

Equation (6) is a general result in file dynamics, in the sense that it holds for many types of basic 

dynamics: Brownian dynamics, renewal-anomalous dynamics, Newtonian dynamics, etc. Now, 

we conclude from the above derivation and Eq. (6) in particular that the result,      

  
 

         
   , for a tagged particle in a basic file is associated with three factors: (1) the 
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requirement that the free particle mean absolute displacement scales as,                
 

 , (2) 

the requirement for ‘cooperation’ from the other particles in the length       that scales as one 

over the number of particles in the covered length, and (3) the condition of a constant particles’ 

density.  

 

II.b.2. Scaling laws for files with scaled density 

We can write down also a formula for the MAD for a file with initial density law that follows Eq. 

(1), yet this is based on results from different calculations, since the value of   is not known. 

Namely, the calculations of the scaling laws are limited for files that have the property that any 

segment in the file has the density     , and this of course is not the case when the density is 

not fixed. Still, since the density scales with the distance, it is possible and sensible writing a 

scaling law for the middle particle in the file; this scaling law follows, 

                     
   
 .      (7) 

Although Eq. (7) is obtained when using in Eq. (3),  
   

   
 , set for matching the result for the 

MSD from calculations of Brownian file’s PDFs and scaling-laws [see the discussion around 

Eqs. (30)-(31)], Eq. (7) indeed generalizes the MSD obtained from these calculations, since it 

addresses also dynamics that are not Brownian. 

   Now, Eq.(1) is the initial density, yet during the process the distances between particles 

change. So, without care, each particle in the system will become a free particle, at long times. 

For handling this scenario, yet still capturing the effect caused by the not-fixed initial density, we 

define the length L
*
, as the length in which the effect is tested. In this length, the initial distances 

between adjacent particles increases for remote particles from the tagged one, placed on the 
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origin. Outside this distance, we have a constant density,     
   

 
        . So, we have here a 

process of particles’ spreading: the particles in the denser area spread outside into the periphery, 

where there, the dentistry is smaller. The diffusion of the tagged particle in this spreading 

process follows Eq. (7). Note that outside the area of length 2L
*
, the file has much fewer particles 

and the density is much smaller than of a file with a constant density of,    
 

 
. The above is 

presented in Fig. II.1 that shows the expected MSD in a file with a density that is not fixed in an 

interval L
 *

, together with curves for the MSD in constant density files with    and   . In this 

figure, the red curve is the expected MSD for a file with a=1/3 in Eq. (1). We expect observing 

the effect for several orders of magnitude, in a time span among the first arrow and the third 

arrow in the figure (the locations of the arrows depend on the value of   ). The ‘trust’ upper time 

      (the time indicated with the third arrow) is found from,              , and this is the time 

it takes a free particle reaching the distance   . Results from simulations are presented in II.b.4 

and indeed coincide with Eq. (7), and with the curves presented in Fig. II.1.  

 

 

Fig II.1 The MSD in a file with a density that is not fixed in an interval of length   . See text for 

discussion.    
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II.b.3. Scaling laws for heterogeneous files 

In this paragraph, we derive a scaling law for <|r|> in a heterogeneous file with a constant 

density. We start with the following set of relations, 

<|r|> = <|r|>free/n = Δ
1/2

<|r|>
1/2

free ≈ Δ
1/2

[D(<|r|>free)t]
1/4

.          (8) 

Equation (8) and Eq. (5) are similar: n is the number of particles in the cover length, yet <|r|>free 

is the MAD of a free particle with a modified diffusion coefficient, <|r|>free≈[D(<|r|>free)t]
1/2

.  

D(<|r|>free) should reflect the fact that in an interval of length <|r|>free in the actual file, there is a 

typical diffusion coefficient that represents all the particles in this length, since we have 

substituted one for many. Clearly, D(<|r|>free) is among the slowest diffusion coefficients in the 

interval of length <|r|>free. Still, it should represent a bunch of slow particles, and not merely the 

slowest one. For estimating D(<|r|>free), we first derive the PDF of the smallest diffusion 

coefficient,     , among   particles, denoted as          . Since the diffusion coefficients of 

the particles are drawn independently, this PDF obeys, 

                           
 

    
  .      (9) 

        is the PDF that the slowest diffusion coefficient has a value of      and the integral to 

the power of   is the probability that all the other particles have diffusion coefficients that are 

larger than     . A normalization constant doesn't affect the following calculations, and it is 

omitted. Using Eq. (2) in Eq. (9), we find (for    ), 

                                    
.     (10) 

Equation (10) has the typical form of a PDF in extreme value statistics [2.33]. We use this PDF 

for linking a typical small diffusion coefficient and  . For this, we look on the exponential factor 

in the PDF,               
, and notice that only when the condition,                , is met, 
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a large probability can be assigned for small values of     . Solving for      , we find,       

          . Using       in Eq. (10), we find, 

                      .         (11)     

We define the typical value for the slowest particles in the interval of   particles (   ), 

denoted as    , as one over the PDF           , 

                           .       (12) 

For using     in Eq. (8), we need the scaling of the number of particles   in           with 

time. For this we use the equation: 

                                      
        

  ,  (13) 

since,             .  Solving Eq. (13) for           and using            , we see, 

   
   

   .           (14)  

Using Eq. (14) in Eq. (12), we have,      
  

     
  

   , and when substituting this relation in Eq. 

(10), we have, 

        
   

        ;      
   .    (15) 

In Eq. (15),        . Equation (15) is the scaling for the MAD in a file of heterogeneous 

walkers with a constant initial density, namely, for a=0. In a file with a density that is not fixed, 

the file’s density doesn't scale with the distance in the sense that a given interval of length   taken 

from the file at different locations along the file has a different density of particles. Thus, any 

scaling law for such a file must rely significantly on known results. Discussion about this point is 

presented around Eq. (7) and Eqs. (30)-(31).  

     Scaling law analysis enables generalizing the results for files with different kinds of 

dynamics. We consider in what follows heterogeneous-deterministic files. A deterministic file is 
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a file in which the particles are Newtonian and each particle is assigned an initial velocity    

with equal probability. In a simple deterministic file, the PDF of a tagged particle is a Gaussian 

with a variance that scales linearly with time. What is        when the value     is drawn from 

a PDF of the form of Eq. (2) with equal probability for any direction? Starting from Eq. (8), we 

find, 

                 
   

   ,           (16) 

where      is a characteristic velocity in the system. Equation (16) is calculated in a similar way 

with the analysis of this paragraph. Equation (16) shows that as γ→1 the deterministic file 

freezes and as γ→0 the file behaves like a simple deterministic file. 

 

II.c. PDFs in normal files 

In this part, we calculate PDFs in simple files, and in heterogeneous files. The dynamics are 

Brownian in all cases. We show that the PDF of a walker in the file is always a Gaussian with a 

variance that scales like, 

  
         

                  ;            .  (17)                           

This result for the MSD generalizes the results obtained from scaling laws in the sense that it is 

correct also for files with initial density that is not fixed.  

 

II.c.1. PDFs in simple files, and files with scaled density 

The diffusion equation for the particles’ PDF           in a simple file obeys a diffusion 

equation (for point particles): 
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    ,         (18) 

with the initial condition, 

                       
 

    
          ;          x0,j = sgn(j)∆|j|

1/(1-a)
.   (19) 

Here,   is a microscopic length, and      . The equation of motion is accompanied with a 

set of boundary conditions defining the nature of the interactions in the file: each pair of adjacent 

particles in the file obeys a reflecting boundary condition upon encounters,  

    
                

                  
   ;         ,   (20) 

which simply means that the adjacent particles bounce towards their territories when collide. The 

joint multi-walker PDF is calculated from the Bethe ansatz [2.34]. The Bethe ansatz is the {k}-

space, {k}=k-M,…,kM, integrand of the  Fourier transform of the solution (xk),  

            
 

  
                

 
          

 
 
    .              (21) 

Here, the index p contains the permutations of all particles’ indices, so the summation is over    

permutations (e.g. xj(p*)=xi, for a given p*, and,         ).  

The joint PDF in {x}-space is found from Eq. (21), 

                   
 

    
             

 

     .               (22) 

We can show that            is normalized to 1 while performing an integration over the {x}-

space coordinates with the restriction, 

                        .              (23) 

It is seen from direct calculations for small   values that the restricted integration can be 

replaced with an unrestricted integration for each particle, i.e.,        , j=-M,…, M, when 

dividing the result with N!. Thus, each permutation in the expression for           is a product 

of   integrals, each of which is normalized to one, and so each permutation contributes a factor 
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of 1/  . Since there are    permutations,            is normalized to one. We will use these 

points in the following calculations. 

PDF for the tagged particle.- For obtaining the PDF for the tagged particle,          ,      

and     , we need to integrate out all the file particles’ coordinates except of  , while obeying 

the above restriction, Eq. (23). This is performed when separating the integrals into left integrals, 

and right integrals, 

                                
 

 

 

  

     

  

     

  
    

 

  
               

 

    
. 

This 2  -dimensional integration fulfills Eq. (23). The particles always maintain their order. 

Similar with the calculations of the normalization constant, we can use   as the upper bounds in 

all the left integrals, and use   as the lower bounds in all the right integrals. Then,           

obeys, 

          
 

 
      

 

  
    

 

 
           

   ,                  (24) 

where   is the normalization constant. Equation (24) enables further analysis since it expresses 

          with a products of separate integrals, 

            
 

 

  
           

      
 

  
 

 
 

  
                

    
 

 
 

 
 

  
              

 
    .           (25) 

Here, for notation convenience, we define,        . (   equals           for normal 

diffusion, and it is the natural length scale in the system.) For any permutation   , the faith of 

each integral over   , with     , is one of following three possible outcomes (here we use 

asymptotic analysis of large times and a finite  ): 

(1) When (            , the integral is approximated with,    . 

(2) When (             , the integral is approximated with,  .   

(3) When (             , the integral is approximated with, 
 

   
 

     
, where,               . 
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These three possible outcomes are also obtained for any integral over    with    , when 

switching the condition-part of cases (2) and (3). For each permutation, we count the number of 

integrals of each kind (cases (1)-(3) above), and then calculate the total of all permutations’ 

results. Counting the important permutations that contribute for           in Eq. (25) is the 

intriguing part in the calculations of this PDF. Yet, once we manage identifying and actually 

counting these permutations, we can perform similar calculations also for heterogeneous files. 

This is the reason that we spell out these calculations here.   

     We start the analysis of Eq. (25) when analyzing           for small values of  . Here, small 

  values are such that,       . We define ordered-permutations, denoted with     , and these 

permutations have all initial coordinates,              
 , positive, when j is positive, and so they 

are on the right of  , and all the initial coordinates,               
 , negative, when –   is 

negative, and are thus located on the left of  . Figure II.2 illustrates such a possible permutation. 

Now, since the tagged particle is the middle particle, and   is small, many ordered-permutations 

exist. In fact, there are (M!)
2 

such permutations. There are M! internal permutations of the left 

initial conditions and M! internal permutations of the right initial conditions, starting from the 

‘perfectly’ ordered permutation,     :            for every j. All such (M!)
2 

 permutations of 

the ‘perfectly’ ordered permutation lead to the same result of the integrals in Eq. (25), since the 

integrals are independent of each other. For small  , only cases (1) and (2) are relevant for the 

ordered permutations. Each ordered permutation gives a constant independent of  , which gives, 

 
 

 
 

   

. So, we find that for the ordered-permutations, Eq. (25) is reduced, and reads: 

 
 

 
 

   
  

 
 

  
           

  
 

 
 

   
 

 
  

 
 

  
        

 

       
 

 
 

   

.  

That is, the contribution of ordered permutations to Eq. (25) is a constant independent of  .  
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Fig II.2 An illustration of an ordered permutation. Shown are a realization of the initial conditions, with, 

           , and the value of   (in red). Each tick represents a particle at the initial stage of the process. 

 

     Thus, for (  )2 
ordered permutations from the possible (2 )! permutations in Eq. (25), the 

small   limit contributes a constant. There are still 4
M

(  )2 
permutations in which the initial 

conditions are not ordered. For calculating these permutations, we perform the following 

calculations: we start with the perfectly ordered permutation, and choose   initial coordinates 

from the left- -initial coordinates, and choose   initial coordinates from the right-M-ordered 

initial coordinates, and switch the sets. For each switch, there are the ‘standard’ (M!)
2 

internal 

permutations all resulting in the same result (that we still need calculating for each switching 

protocol). We distinguish among the following switching protocols: 

 The chosen initial-coordinate is within the distance    from  :                  

 The chosen initial-coordinate is at a distance larger than    from  :                 

Using these options, we find that there are 4 possibilities for each switch, with the following 

results:  

 The contribution from switching an initial coordinate within the distance of    from   

with an initial coordinate within the distance of    from   from the other side, that is, 

                  ;                and                ,  

gives approximately the result of the ordered permutations discussed above, that is, a 

constant independent of  .  
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 The contribution from permutations in which both initial coordinates that are switched 

are at a distance larger than    from   (in opposite direction), that is, 

                 ;                     and                , 

is small relative to the contributions from the switching protocols in (26) discussed in the 

next case.  

 The important case is when an initial coordinate within the distance of    from   is 

switched with an initial coordinate from the other side (right-left switch or left-right 

switch) that its distance to   is larger than   : 

                 ;                and                ,               (26.1) 

or, 

                 ;                and                .                 (26.2) 

In what follows we calculate the contributions from these permutations. 

   

Using the results of case (3) above, we find that the switching protocols (26.1)-(26.2) contribute 

to Eq. (25) terms of the following form: 

 

                     
       

   
 

 
        

 

       

 
   

     

   
 

 
         

 

        

 
   .                            (27.1)   

 

      in the upper bounds in Eq. (27.1) is the number of particles in   . In a file with a density 

law obey Eq. (1), 

        
     

   

 . 

In Eq. (27.1),    is the combinatorial factor, 
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 , 

counting the number of  ways to perform the switching protocol for   coordinates. Equation 

(27.1) has two combinatorial factors:    is associated with the switching protocol of Eq. (26.1) 

and    is associated with the switching protocol of Eq. (26.2). Each combinatorial factor is 

associated with a product of Gaussians resulting from calculating the integrals of case (3):    is 

associated with the product,           
 

         
   , and    is associated with the product 

           
 

          
   . Note that, in principle, the arguments of the Gaussians depend on the 

indices   and  ,               , and                 . Yet, the actual form of      , in the 

context of Eq. (27.1), should obey,  

            

  
, 

where    is a very large number. The reason is that          in,                       , 

should reflect all the   coordinates from the left (right) of   for          [        ], and for this 

we must use an average quantity, say,    (   ), and this quantity is positive (negative) and large 

when   is large, since    is proportional to  . We will use this point in the final step of deriving 

         .  

     Now, we look on Eq. (27.1) and note that we can replace    and    with their maximal value, 

and write an upper bound for Eq. (27.1): 

           

 
          

  
                 

  ,                         (27.2)   

where    goes over all the permutations in Eq. (27.1) (about    permutations). Equations (27) are 

the major results of this sub-chapter. 

     Starting from Eqs. (27), the limit of many particles, where   is much larger than   , is 

considered. Then, the symmetric term,        , dominates the sum in Eq. (27.1), and we 
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find: 

                     
 
 

 
        

 
         

 

               

 
    

           
 
        

    
              .      (28) 

 

In Eq. (28), we use,                    , relying on the fact that all the initial coordinates 

in      are at a distance of, at least,    from  , yet the average of all of these is much larger, and 

proportional to   . Thus, the leading term for the PDF of the tagged particle reads, 

 

             
  

 

        
          

  ;         ,              (29)  

 

since         
     

   

 . Eq. (29) should appear with a logarithmic correction in the exponent. 

For large values of  ,       , there are always   initial coordinate in the left of   (say    ). 

This gives rise to a correction term,   
             

   , which multiplies the result of any 

permutation. (This term holds for a constant density.) But, the switching analysis is the same as 

discussed above. The correction term is important only when        , yet the PDF at such 

distances is of the order of o(10
-6

).  

   Equation (29) gives the MSD for a file with a density that is not fixed (for the middle particle): 

   
           .          (30) 

Since,         =    
       

       
, Eq. (30) is written also in a form of a MAD, 

               
       

, 

and from this equation we conclude that the scaling law for the MAD (of the middle particle) in a 

file with a density that is not fixed should follow: 
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         .         (31) 

This equation was used for deriving Eq. (7). Indeed, one can use this equation also for files that 

are not Brownian. Interestingly, this equation shows that the effect of the expansion in not trivial: 

when the density is not fixed, cooperation has a smaller effect. Although it is still required that n 

particles will cooperate and move in the direction of the propagation, the fact that there is an 

expansion process towards the periphery, facilitates the demand for cooperation. Since the power 

   

   
 is always smaller than 1 when a is smaller than one, the cooperation term 

 

 
   
   

 demands that 

a smaller amount of particles than those that actually exist in the interval will cooperate. The 

physical reason is very clear: the particles simply move towards the periphery with higher 

tendency than they move towards the origin, effectively causing a process of file diffusion with a 

force towards the periphery. Since the scaling law in Eq. (31) holds for the particle in the middle, 

this force helps the propagation of the tagged one, and it is seen in the form of the cooperation 

term.    

 

II.c.2. PDFs in Heterogeneous files 

The multi-walkers PDF.- Heterogeneous files obey the following equation of motion: 

                  
   

         
 

    
,                (32)      

with the boundary conditions:     

      
                 

           
                 

,         (33)   

where,             , and with the initial condition, Eq. (19). We approximate the solution 

of Eqs. (32)-(33) with the expression,   

           
 

  
  

  
             

    

 
    

 .        (34) 
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Equation (34) is our first main result in this part. The proof is presented in what follows.  

Proof of equation Eq. (34).- We first show that Eq. (34) reduces to Eq. (19) in the limit,    . 

In this limit we find: 

                             
     ,               (35) 

since any normalized Gaussian reduces to a Delta function in the limit    : 

 
 

      
 

 
             

     

   

             . 

     Yet, since the solution must always obey Eq. (34), only the ordered permutation survives, say, 

permutation    , obeying: 

                                .    

Namely, we have: 

                            
    , 

and this is indeed the required form of the initial condition. 

     Next, we show that the PDF in Eq. (34) fulfills the equation of motion. First, we take its time 

derivative: 

     
 

  
  

  
             

    

 
    

    
 

  
 
 

  
  

             

    

 
    

       

     
 

  
  

  
             

    

 
    

  
 

 
 

             

    

 
     .   (36) 

Now, using, 

 
 

  
 
 

  
   

 

 

   
 
    

 

          
   

 
 

 

  
 , 

we have: 

  
 

  
  

  
             

    

 
    

  
 

 
  

             

    
 

 

 
  

     .     (37) 

Here, we used the relation,       . Now, applying the operator in the right hand side of 
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Eq. (32) on Eq. (34), we see:  

   
 

  
      

   
  

  
             

    

 
    

 
 
    , 

giving, 

   
 

  
      

 

    
   

          

    
 

  
            

 

    

 
    

 
 

   
 

  
        

          

    
 

 

 
 

    
  

  
            

 

    

 
    

 
 
    . 

This equation is rewritten in the form of,  

   
 

  
  

  
            

 

    

 
      

            
 

    
 

 

  
  

     .    (38) 

Cleary, Eq. (38) and Eq. (37) are equivalent. 

   Now, for the boundary conditions: applying on the PDF the left hand side of the boundary 

condition in Eq. (33), we find, 

 

        
  

  
             

    

 
    

 
 

         

  

  

 
             

  
            

    
 

              

      
  

             

    

 
      

         .              (39) 

 

Here, the exponential’s argument counts all the coordinates excluding    and     . Applying on 

the PDF the right hand side of the boundary condition, one sees: 

 

            
  

  
             

    

 
    

 
 

         

  

  

 
               

  
            

    
 

              

      
  

             

    

 
      

         .  (40) 
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Now, we look on permutations    and   : these are the same excluding the values for      and 

      . In particular, for permutation   , we set: 

               
             

     , 

and for permutation   , we set: 

                
             

     . 

The set      contains permutations of all the initial coordinates excluding the coordinates      and 

      . Now, in what follows we calculate,     over          permutations with operations 

over three variables: 

                           ,         (41.1) 

and we use the equality, 

                                       .      (41.2) 

(Cleary, the above couple of equations hold also for      .) We will show that the following 

relation holds in the limit    : 

                           .         (42) 

Proving Eq. (42) is sufficient for proving that Eq. (34) approximates the boundary conditions 

(33), since with Eqs. (41)-(42), we have the full boundary condition.  

     Starting from Eq. (42), we have for the left hand side: 

 

             

 
       

  
      

    
 

      

      
 
       

  
      

    
 

      

      
 
,     (43.1) 

where the right hand side of Eq. (42) reads:  
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.         (43.2) 

The factor   that appears in Eqs. (43) reads: 

  
  

 
  

  
              

    

 
     

  . 

Now, the exponential factor  
  

      

    
 

      

      
 
 is one when    , and Eq. (43.1) is rewritten: 

 

              

 
 
   

           
      

    
 

      

      
   

             
      

    
 

      

      
  ,    (44.1) 

 

and similarly, Eq. (43.2) reads: 

 

     
         

 
 
   

           
      

    
 

      

      
   

             
      

    
 

      

      
  ,    (44.2) 

    

  Clearly, Eq. (44.1) and Eq. (44.2) are equal in a leading order of   
 

 
 , and thus, Eqs. (44) 

prove Eq. (42), and thus prove Eq. (34). 
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The tagged-walker PDF.- Using Eq. (34), we approximate the PDF of the tagged particle in the 

heterogeneous file with, 

          
 

  
  

  
             

 

    

 
    

   
 

  
 
   

 

  
     
 
   .    (45) 

Here,        . Equation (45) is based on the same approach that relates Eq. (22) with Eq. (29) 

for files with the same diffusion coefficient for all the particles. Several additional comments are 

presented in what follows for explaining this relation. 

Comments on the approximation in Eq. (45) for a tagged particle.- Here, we relate Eq. (34) 

with the PDF of a tagged particle in the file,  

          
 

  
  

  
             

 

    

 
    

  .       (46) 

In Eq. (46),    goes over the relevant permutations (about    permutations); see the discussion in 

the previous title around Eqs. (27), for further details on the permutations in   . We then discuss 

the technical details that further approximate           with, 

 

  
  

  
             

 

    

 
    

   
 

  
 
   

 

  
       
 
   .        (47) 

In Eqs. (45)-(47),      is always a normalization constant, and in Eq. (47)         (where, 

        is the tagged particle coordinate minus its initial position) and    

  
  are scaled 

distance (without dimensions) and scaled time (without dimension), respectively. Also, we recall 

that   (     ) is a microscopic length scale and   is the fastest diffusion coefficient in the file.  

   The relation connecting Eqs. (34) and (46), written in a symbolic way, reads, 

 

  
  

  
            

 

    

 
    

       
 

  
  

  
             

 

    

 
    

  .     (48) 

Equation (48) is based on the relation connecting the corresponding quantities in a file with a 

unique diffusion coefficient; see Eq. (22) and Eq. (27.2). In fact, we can carry on precisely the 
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same analysis that was used in obtaining Eq. (27.1) from Eq. (22), here, for the heterogeneous 

file, for deriving Eq. (48). The fact that     appears in the denominator of the exponential does 

not change the number of the particles in the length    , and this is the reason that the same 

analysis holds for both systems.  

     Now, for explaining the upper bound of,   
  

             
 

    

 
    

  , in Eq. (47), we notice that 

          is always at a distance from    that is not smaller than      . In fact, we should set, 

             ,                   (49) 

where    is a large quantity that is proportional to  . The reason is simple:          should 

reflect all the   coordinates from the left (right) of   for          [        ], and for this we must 

use an average quantity, say,    (   ), and this quantity is positive (negative) and large (in 

absolute value) when   is large. See also the discussion above Eq. (27.2). 

     Using Eq. (49) in the exponentials’ arguments in Eq. (47) gives, 

              
    

           ,         

and so, 

 

  
  

  
             

 

    

 
    

         
 

  
 
  

  
     

    

 
   

.                    (50) 

Renormalizing Eq. (50) with respect to    gives Eq. (47).  

Solving the PDF for the heterogeneous walker, Eq. (45).- We proceed from Eq. (45) when 

calculating ∑ in last factor in Eq. (45). These calculations are more complicated than those 

performed for the simple file. Firstly, for a heterogeneous file that its diffusion coefficients are 

drawn from Eq. (2), any group of   particles (taken from the   particles in the file) must have 

the following values for their diffusion coefficients,  

                       ;      , 
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where the values of the diffusion coefficients are ordered from the largest towards the smallest. 

This relation’s accuracy increases as    . See the discussion in what follows. 

   Secondly, we need to find     . This is found from the equation: 

      

   
  .                     (51) 

Relation (51) represents the arguments in all the exponentials in Eq. (45).       is simply found 

from the density law in the system,            . The diffusion coefficient     appearing in Eq. 

(51) must represent a bunch of slow particles in the interval that has in it   particles, as these 

particles affect the result the most. Yet,     is a typical slow diffusion coefficient, and not 

necessarily the slowest. We estimate     as,               . The derivation of this relation is 

spelled out around Eq. (12). Note that when    ,     reaches the value of the slowest diffusion 

coefficient from a group of   particles. Yet, for a relative fast system     approaches a constant 

independent of  . A similar trend in seen in the behavior of the average diffusion coefficient, 

which vanishes when     and has a finite value (larger than zero) when    . Now, using the 

above expressions for       and     in Eq. (51), we find, 

   
          

        .                      (52) 

Eq. (52) for a constant density file and Eq. (14) are equivalent. Now, substituting Eq. (52) in Eq. 

(45) yields the PDF for the tagged particle in a heterogeneous file: 

          
 

  
 
   

 

  
    

   

 
 
  
    

    
 

  
 
   

 

  
 

 
   

 
 

  
 
   

 

  
 

     
        

.                      (53) 

A Gaussian PDF is specified through its variance, and so, 

   
     

   

    ,                  .                                  (54) 

Equations (53) and (54), together with Eq. (34), are the most important results of heterogeneous 

files. Note that Eq. (54) is obtained from Eq. (53), and so it is the upper bound of the MSD of 
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this file. Yet, we show in scaling law analysis (and in simulations shown in what follows), that 

this is in fact the asymptotic limit of the actual MSD.   

     Examining Eq. (54), we note the following. In the limit of,    , <Rd
2
     τ

(1+a)/2
. This result 

and Eq. (7) for a Brownian file are equivalent. We conclude from this result that when there are 

just few slow particles in the file, the MSD here and in a simple file scale similarly. Thus, this 

result gives the criteria when W(D) affects the diffusion process significantly. Now, in the limit 

of a constant density, a=0, we have, <Rd
2
> ≈ τ

(1-γ)/(2-γ)
; a result that was obtained from scaling 

laws for heterogeneous files with a constant density; see Eq. (15). Note also that when, γ→1, 

<Rd
2
>≈1, namely, in this limit the system is frozen. Equation (54) also predicts a cancellation of 

opposing effects: slow diffusion resulting from many slow particles and fast diffusion resulting 

from a low particles’ density can cancel each other; when:          , a simple file scaling is 

seen, <Rd
2
>    τ

1/2
, yet the actual file is totally heterogeneous. 

     Finally, we note here that a very different result for the MSD than Eq. (54) is obtained in a 

heterogeneous file obeying Eq. (2), when all the particles start at the origin; see Ref. [2.21] for a 

discussion regarding such a variant.   

The form of   .- Here, we calculate the form of    appearing just above Eq. (51).  

Given the PDF, 

                      ;       ,    

defined in the interval,      , we draw   random numbers from this PDF. What is the 

shape of the curve when we plot these random numbers when ordering them from the largest 

value towards the smallest? Answering this question gives, 
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                      .                      (55) 

This expression’s accuracy increases with the value of  .  

     For proving Eq. (55), we first write the expression for drawing a random diffusion coefficient 

from      using the unit density, 

        ;      .  

We use the relation, 

              , 

and find, 

     
       .              (56) 

In Eq. (56),    is a random number drawn from the unit PDF,      . When there are   random 

numbers,     is a vector of length  . For proceeding, we look for the functional form of element   

in this vector after ordering it from the largest value to the smallest. We call this vector (    with 

ordered elements),    . It is clear that the largest value of     is one; the smallest value is     (this 

is shown in what follows). As the density       is fixed,      must have the form, 

         

 
    

 
        

 
.          (57) 

Equation (57) proves Eq. (55).  

    For showing that the smallest value in      is    , we calculate the PDF of the smallest number 

from possible     random numbers drawn independently from      : 

  
                       

 

 
 
 

       
   .          (58) 
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Similar with the analysis of extreme value statistics in scaling laws calculations [around Eqs. (9-

10)], we find the typical value of the smallest number drawn from   
        ,      , when first 

demanding that      is not smaller than    ; namely: 

      .  

Using this upper bound in the re-normalized PDF in Eq. (58) gives: 

  
           .                        (59) 

Finally, the typical smallest value of the vector    ,      , is the inverse of   
          in Eq. 

(59), that is, 

         .  

It is very simple seeing that this analysis is very accurate even for 501 particles (the number of 

particles used in our simulations) in simulations.  Results from several simulations (for three 

different values of  ) are shown in Fig. II.3. Coincidence of the simulations with the formula in 

Eq. (55) is evident. 

 

 

 

 

 

 

Fig II.3 Results from simulations drawing 501 

diffusion coefficients from Eq. (2), and ordering 

them from the largest to the smallest; curves are 

obtained for 3 different values of  ,   
 

 
 
 

 
 
     

 
 . 

The curve with the smaller value of    is to the right 

of those with lager values of  . Here,    . This 

figure also shows the curves from Eq. (55) for each 

value of  . Coincidence among the curves from the 

simulations and the estimated curves is evident. 
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II.d. Simulations of normal files  

We perform off-lattice simulations of Eq. (32) with reflecting interactions between point 

particles. The fact that the particles are point-like is indeed shown in the equation of motion, yet, 

does not change the long time statistics of the file compared with results of files on lattices. This 

is simply shown in simulations. (In fact, simulations are always lattice-like since the smallest 

length scale is limited with the precision of the machine.) In the simulations, each particle is 

assigned a diffusion coefficient from the PDF in Eq. (2) (Λ=1 in the simulation). (We use units 

without dimensions all over). The j
th

 particle is positioned at, x0,j=sign(j)|j| 
1/(1-a)

∆ (∆=1.3 in the 

simulation). We set N=501 particles. In each time step (dt = 0.13 in the simulations), each 

particle is moved relative to its position according to the equation,  

                 ,  

where   is a random number from the unit PDF, and is chosen for each particle at each time step. 

The particles’ locations are ordered after each time step. The interval’s length is bound: edges 

particles can’t move further than their initial conditions plus a room for several full jumps in the 

direction that extends the initial interval length. The above iteration scheme is executed over and 

over and over again (three millions
 
time steps are performed for each simulation). Note that in 

the above simulations’ rules, the boundary conditions are always fulfilled. Also, note that the 

above simulations’ rules were also used for simple files; e.g. files with the same diffusion 

coefficient. Yet, these rules hold also for the heterogeneous file. Here, the reflection principle 

(that is, the ordering of the particles after each cycle of jumps) represents: (a) elastic collisions 

among particles that can clearly also represent particles with distribution of diffusion 
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coefficients, and (b) Brownian dynamics, so the particles momenta decay after each jump 

relatively fast, and so in the next cycle of jumps, the particles do not drag previous velocities.  

     We perform extensive simulations. Each simulation has different values for a and γ where, 

a=0, 1/3, 2/3, and, γ=0, 1/3, 1/2, 2/3. In each simulation, we calculate the MSD for thirty 

particles from the file. For each simulation (defined with a specific values for γ and a), the run 

time for the simulation and the MSD-calculations is three minutes on a standard 3.37 GHz PC.  

     Figure II.4 presents the results for the MSD from all the simulations. Each panel shows MSD-

curves for three values of a each with the same value of γ. The analytical curves obtained from 

Eq. (54) are also shown. The curves coincide with the numerical results in a satisfactory level. 

The only point to note is that as a increases, converges occurs at larger times. This is an expected 

behavior for a file with particle's density that is not fixed. 

     In light of the simulations’ results, a final remark is made on the interpretation of the limit of 

long times. In this part, we used this limit in deriving the statistics of the heterogeneous file. 

Indeed, several interpretations for this limit were given. Yet, we can use Fig. II.4 for further 

define the meaning of long times. Figure II.4 shows that this limit depends on the value of γ and 

 : when γ and/or   are large, the coincidence of the simulations’ curves and the curves obtained 

from Eq. (54) happens at relatively larger times; plus, at smaller times, the difference among the 

curves is, in most cases, larger when γ and   are larger. So, we say that a long time limit 

corresponds to the time,   , it takes a particle to reach a distance    from its origin that has    

particles in it.    is then estimated with Eq. (18):                    
  . These relations give: 

      

 
      

      
, where   is the scaling power in Eq. (54). We use       as a safe-bound 

for   , as the value of 35 (events) is considered a large number in statistics. From Fig. 1, it is 
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clear that also for      the coincidence among the simulations’ results and the curves obtained 

from Eq. (54) is excellent. 

 

 

 

 

 

 

 

Fig II.4 (color online) The MSD on a log-log scale from twelve different simulations. Each simulation has 

specific values for a and γ, where: γ=0, 1/3, 1/2, 2/3, and a=0, 1/3, 2/3. Each panel has a constant value of 

γ (the smallest value of γ is in the top-right panel and γ increases in a z-like shape). Each curve (in a given 

panel) corresponds to a different value of a, where a lower curve always has a smaller value of a. The 

analytical curves from Eq. (54) are also shown, and coincide nicely with the results from the simulations. 

[The free parameter of any analytical curve is always chosen to coincide best with the curve of the 

simulation. Yet, the curve’s slope is obtained from Eq. (54).] Note that the x-axis in the figure is obtained 

when monitoring the value of tj every, 10
Aj

 time units (A is a number), and then taking the log of the time 

vector. The Y axis is the log of the monitored MSD. 

II.e. Concluding remarks   

In this chapter, chapter II, we dealt with normal stochastic dynamics of heterogeneous hard 

spheres in a very long strait: heterogeneous walkers in a channel. Each walker has a diffusion 

coefficient drawn randomly from a PDF,             , 0≤  <1, for small D. The initial 

positions are also distributed such that the initial particles’ density law obeys,             
  , 

     , where   is the distance from the orgin. We first derive the approximation for the 
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multi-walkers PDF for heterogeneous files:           
 

  
      

  

  
 

            
 

  

 

    
  . 

From this PDF, we derive the statistics of the tagged particle in heterogeneous files:    
   

  
   

    ,          , and,            
 

  
 

   
 

    
  . The same results for the tagged particle’s 

MSD were obtained using additional two approaches: scaling law analysis and numerical 

simulations. We also obtained results for deterministic files with a constant particles’ density and 

distribution in velocities of the form of Eq. (2); here, using scaling law analysis, we found that 

the MAD obeys:         
   

   . All the above results are valuable for files in which the walkers are 

not identical, and differ in, for example, mass, size, or composition, and in the context of 

biological channels. 

     Still, there is an interesting generalization of the above: anomalous files. In an anomalous file, 

the basic dynamics are such that the jumping time PDF (for individual jumps) decays like a 

power-law. (A jumping time PDF in a Brownian file decays exponentially.) Anomalous files 

exhibit a rich spectrum of behaviors, where the nature of the anomaly of the file determines its 

statistical behavior. Renewal-anomalous files, in which all the particles attempt jumping at the 

same time, are different than anomalous files that are not renewal, where each particle has its 

own clock of jumping times [1.14]. Also, anomalous renewal files with fluctuating diffusion 

coefficients may lead to interesting phenomena; this statement relied on a corresponding system 

of a free particle presented in Chapter I: when a free stochastic particle performs anomalous 

dynamics and its diffusion coefficient is drawn every jump from a distribution, a transition in the 

rule for the power that governs the effective waiting-time PDF of the dynamics is seen [1.17]. 

Anomalous files are presented in the next chapter. 



III. Anomalous files: renewal ones and independent ones 

 

52 
 

III. Anomalous files: renewal ones and independent ones 

 

 

 

III.1. Renewal-anomalous-heterogeneous files 

III.1.a. Introduction for renewal files 

In the previous chapter, we studied mainly files with normal dynamics. Indeed, the scaling laws 

enable us obtaining the MSD in files that have different basic dynamics; for example, Eq. (II.7) 

shows:  

       
           

       
,      (1)  

for files with density law obeying Eq. (II.1). Eq. (1) is the MSD also for Newtonian files and 

renewal-anomalous files. Particles in Newtonian files exchange momentum upon collisions, and 

have            ,  where in anomalous files, the jumping times for individual jumps are 

taken from the PDF,          
     with      , and have,            . In fact, Eq. 

(1) is correct for renewal files (and for the middle particle when the density is not fixed). 

Renewal files versus files that are independent are discussed in this chapter, since this difference 

is important when the dynamics are anomalous.  

   In this chapter, we study anomalous files from many angels. Indeed, we clarify the distinction 

among renewal-anomalous files and anomalous files of independent particles, while showing the 

different behaviors in these files. In a renewal-anomalous file, all particles attempt jumping at 

same time, after residing in their positions for exactly the same period of time. This random 

period is drawn independently each jump from      . This is a renewal file: there is only one 
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clock in the system, and each trajectory of a given particle is a renewal process in the sense that 

the jumping periods are independent random variables. In anomalous files of independent 

particles, each particle has its own anomalous clock. This difference is the origin for different 

dynamical behavior; for example, Eq. (1) cannot be used for anomalous files of independent 

particles, and the MSD in such files obeys:            . The results in this chapter are based on 

our papers in this subject from 2010-2011 [1.14, 3.1]. 

   In this part of the chapter, we prove analytically that the MSD for renewal-anomalous-

heterogeneous files scales as the MSD of the corresponding Brownian files in the power of  : 

             
 ,       (2) 

where          appears in Eq. (II.54). Equation (2) is an outcome of a general relation 

connecting PDFs of Brownian files and renewal-anomalous files; this relation, Eq. (2), is proved 

here for the first time. Equation (2) generalizes our previous results for renewal files, e.g. Eq. 

(II.7) (Eq. (1) above), where the file’s MSD is related with the free particle’s MSD of the same 

dynamics. Now, we also show here that Eq. (2) can be obtained using scaling law analysis, where 

such an analysis further explains the relation among Brownian files and renewal-anomalous files. 

Simulations help supporting the analysis. Further discussion about the applications of renewal-

anomalous-heterogeneous files concludes this part of the chapter.  

 

The definition of renewal files.- A very clear way to define the physical model of renewal-

anomalous files uses a simulation scheme. We suggest the following scheme: * a random waiting 

time   is drawn independently from      , * all the particles in the file stand still for this random 
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period, * after residing in their positions for a time period  , all the particles try jumping 

according to the standard rules of the file. * This procedure is carried on over and over and over 

again.  

 

III.a.2. PDFs, MSD & numerical simulations 

Analytical calculations.- We start when writing down the equation of motion for the multi-

walkers PDF of the file. This equation is obtained from the equation of motion for a Brownian 

file when applying a simple convolution on it. Recall that the equation of motion for a Brownian-

heterogeneous file reads [see Eq. (II.32)],  

 

                                      
 

    
                 .       (3)  

Here,               is the normal dynamics PDF for the file’s particles, located at positions  , 

                   at time  , starting from an initial condition    at time,     . 

Equation (3) is solved with the appropriate boundary conditions, Eq. (II.33), and with the 

appropriate initial condition, Eq. (II.19). The equations for the PDF in a renewal-anomalous-

heterogeneous file are obtained from the corresponding Brownian equations (equation of motion 

and the boundary conditions) when convoluting them with a kernel       [where the initial 

condition is obtained from Eq. (II.19)]. The particular form of the equation of motion reads:  

 

                             
 

 
           

 

    
.                 (4)    
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The kernel       in Eq. (4) is related with the WT-PDF       of the same renewal dynamics; 

this relation is made in Laplace space (e.g. [1.7, 1.9]): 

       
       

        
,  

where the Laplace transform of a function      reads,            
 

 
      .  

     We note that Eq. (4), for a uniform file (    ), was introduced in Ref. [3.2]. Yet, we 

emphasize here that Eq. (4) holds only for renewal-anomalous files; that is, for files in which all 

the particles attempt jumping together. This is the reason that Eq. (4) has a form of a simple 

convolution. An anomalous file of independent walkers, in which each walker has its own 

jumping-clock, should have a different equation of motion [see Eq. (12)], leading to a different 

dynamical behavior than that of renewal-anomalous files. We show this in the next part of this 

chapter. 

     Now, we continue with the analysis of renewal-anomalous files, Eq. (4), and write the PDF 

for the system in terms of the PDF that solves the un-convoluted equation, Eq. (3). The relation 

is made in Laplace space: 

             
 

      
                      .           (5)  

Equation (5) is a central result in renewal-anomalous-files: it relates renewal-anomalous files and 

the corresponding Brownian files. For proving Eq. (5), we formally solve Eq. (4) in Laplace 

space: 

                        
  
               

 

      
  

      
    

  

              ,  (6) 

and notice that Eq. (3) has a Laplace space solution of the form, 

                      
  
              .                          
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When using this equation in rewriting the last expression in Eq. (6), we obtain Eq. (5).   

 

The MSD.- From Eq. (5), it is straightforward relating the MSD of normal heterogeneous files 

and renewal-anomalous heterogeneous files, 

          

      
                   .                 (7) 

Now, from Eq. (54) we have,              
 ,   

   

         
, and in Laplace space,  

             
    , and so Eq. (7) gives, 

          

      
          

    . 

Using the asymptotic form of        (small  ),               , we find the kernel in Laplace 

space,            
   , and          follows,  

                 

           . 

This equation reads in time-space,  

           .                                                    (8) 

    The above expression for the MSD of a renewal-anomalous file has a very appealing 

consequence: one can use the results of a file with normal dynamics in the power of   for 

obtaining the results for the corresponding renewal-anomalous file, 

                   
 .        (9) 

Equations (8) - (9) are among the main results of this paper. Equations (8) - (9) originated from a 

general relation connecting PDFs of renewal-anomalous files and Brownian files, Eq. (5). In the 

next paragraph, the same results are derived using scaling law analysis. This unravels another 

interesting relation connecting renewal-anomalous files and Brownian files.   
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Scaling law analysis.- In this paragraph, we derive a similar relation to Eq. (8) in a way that 

gives additional insights into the behavior of renewal-anomalous files. First, we realize that a 

Brownian file is a renewal file in which all the particles attempt a jump every time step   . This 

is simply seen when simulating the discrete-time-version of the equation of motion, Eq. (4). A 

consequence of this property is that the average number of attempts for jumping as a function of 

the time,       , scales, for any particle in the heterogeneous-Brownian-file, as,         . 

This is found from the general relation for          for a renewal process with a JT-PDF     , 

e.g. [1.7], 

              

          
,  

when using the fact that      is exponential for a Brownian file. Now, when using this relation 

for      , we find that for a renewal-anomalous file,          .  The above is used in the 

following way. First, we recall that for any renewal dynamics,                    , e.g. 

[1.7], and use this in Eq. (II.7) for writing, 

                      .  

The next step uses the above also in Eq. (II.54), 

                 ;   
   

         
.    (10) 

Taking this relation to hold for any renewal process, it is the same as Eq. (8), and is 

complementary with Eq. (9), and simply generalizes Eq. (II.7) for any renewal stochastic 

dynamics (since Eq. (II.7) holds for normal dynamics).    

     There is another way for using         in relating a Brownian file with a renewal-

anomalous file. Here, we take the trajectory that changes its value every time step   , and stretch 
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each time step    to a random period drawn from the JT-PDF,      . Clearly, this manipulation 

takes a trajectory with,         , and makes it a trajectory with,          . This suggests 

using the transformation      in             for obtaining        ; namely:  

                    .         (11) 

We will use the above manipulation in the numerical simulations presented in the next 

paragraph.  

 

Numerical simulations.- Based on the above scheme for simulating renewal-anomalous files, we 

present in this paragraph the results from extensive simulations. First, Fig. 1 shows a pair of 

trajectories: the left trajectory is obtained from a simulation of Eq. (3) with       and    , 

and the right trajectory is obtained from the left trajectory when applying the manipulation 

described in area of Eqs. (10)-(11), with      . Note that the right trajectory is stretched one 

hundred thousand times when applying the timescale manipulation, forming the whole left 

trajectory.  

     

 

 

 

 
 

 

Fig 1 Trajectories from file dynamics. The left trajectory is obtained from a simulation of Eq. (3), with, 

    . The right trajectory is obtained from the left trajectory when applying the time-scale 

manipulation described in paragraph scaling law analysis, with,       and    . In the simulation,  

     ,        ,    ,     and      , where we use units without dimension all over.      
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Now, for each renewal-anomalous trajectory, such as the right trajectory in Fig.1, we calculate 

the MSD. The results for the MSD for renewal-anomalous files are shown in the four panels of 

Fig. 2. Note that the calculations of the MSD from renewal-anomalous trajectories demand 

taking into account the fact that the original time vector has random increments. The most 

efficient way to calculate the MSD for such a form of the time vector creates, for each value of   

in        , a trajectory that is monitored in time interval of length  , and from this trajectory 

calculates the value of        .  
 

 

 

 

 

 

 
 

 

Fig 2 The MSD, on a log-log scale, from extensive simulations for the various values of  ,   and  . Each 

panel has distinct values of   and  , written explicitly on the panel, yet the value of   varies,   
 

 
 
 

 
. 

The lower curve in each panel corresponds to      . The curves from our estimation for the MSD are 

also presented. The coincidence with the results from the simulations is pretty clear in all cases. 

 

   Each panel in Fig. 2 has a constant value of   and  , taken from the following values:     
 

 
, 

and,     
 

 
, and shows two curves of the MSD for the various values of  ,   

 

 
 
 

 
, where   

 

 
 

for the lower curve. Also shown are the analytical curves from Eq. (8). The curves from the 
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simulations coincide nicely with the analytical curves. Note that the results for the MSD with 

  
 

 
 span twelve orders of magnitude. 

 

III.a.3. Applicability of renewal anomalous files 

In this part of the chapter, we have showed that the dynamics of walkers in anomalous-renewal 

files simply scale with the dynamics in heterogeneous files of normal walkers. What are the 

possible applications of renewal-anomalous-heterogeneous files? The model of renewal-

anomalous files can be related pretty naturally with many systems that are possible applications 

of file dynamics. We present here a particular example, and this is the dynamics of particles in 

fluctuating pores. Possible realizations of such files include:  

 Pores under on-off fields or under temperature changes (say, controlled externally), 

sensing devices (as was suggested for zeolites, e.g. [3.3]) under on-off fields, 

 Channels as sequencing devices (e.g. [3.4]) under on-off fields.  

The model relevant for such a fluctuating channel contains a channel that occupies one of two 

possible states: (1) a state that enables motion, and (2) a state that does not enable motion of 

particles in it. When the channel occupies the later state, the particles can easily bind the channel. 

The dynamics of the complex process consist of the following stages: 

 The particles diffuse in a channel since the channel is in a mode that enables motion.  

 At random times, the channel switches modes. In a switch, a diffusive mode switches for 

a mode that facilitates the binding of particles to the channel. In this mode of the channel, 

all the particles bind to the channel very quickly.  
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 The particles disassociate from the channel at random times, yet simultaneously, as this 

depends on the time that the channel changes its mode, now, for a mode that enables 

motion.  

The above three stages form the model of the diffusion in a fluctuating channel. Now, in 

particular cases, the stochastic binding times may indeed be distributed according to a PDF of the 

form of      :        
    . Recall that we have rationalize the synchronized disassociation of 

the particles from the pore as a result of large scale fluctuations in the channel shape; yet, the 

reason for a power-law JT-PDF may be attributed to the interactions of the channel with a 

heterogeneous medium. It is known that the influence of a heterogeneous medium on a diffusion 

object can lead to a power-law JT-PDF of the form of       for the diffusing object, e.g. [1.17]. 

(In fact, this was discussed in chapter 1.) Now, it is well-known that bio-channels in 

physiological conditions change their structure constantly, e.g. [1.15], and are in contact with a 

membrane that is heterogeneous in composition. Thus, renewal-anomalous files may indeed 

serve as a promising choice for modeling biological pores in not so few cases.      
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III.b. Anomalous Files of independent walkers   

III.b.1. Introduction for anomalous files of independent walkers 

In the previous part of this chapter, files that are anomalous and renewal were studied. In such 

files, the jumping times of the particles are taken from,        
    ,      , were all the 

particles attempt a jump together. In renewal-anomalous files, the MSD scales as the MSD of the 

corresponding Brownian file in the power of  . In this part of the chapter, we study anomalous 

files made of independent particles. In such files, a random anomalous time is independently 

assigned for each particle. The fastest particle attempts a jump, and then, all the random times are 

adjusted. Finally, the particle that attempted jumping receives a new random time. This system 

has N independent anomalous clocks, where a renewal-anomalous file has only one clock. This is 

the origin for very different dynamical behaviors: since the clocks are anomalous and 

independent, the particles are further connected in space, causing further slowness, even relative 

with renewal-anomalous files. Mathematically, the reason is that at large times, the order of the 

jumps that enables motion is exponentially small (with the number of particles that are suppose 

moving), and the jumping times are without a typical timescale (that is, the typical timescale is 

infinite). The basic manifestation of this is a logarithmic scaling with the time of the MSD per 

particle,            . Moreover, and even more exciting, we find a unique phenomenon in 

such files: the formation of clusters. We characterize the criticality of this phase transition 

showing that the number of particles in clusters at steady state follows,      . We also prove 

in many numerical tests that this phenomenon is indeed stable. Finally, we also suggest a link of 

this phenomenon with the mysterious phenomenon of rafts in membranes [3.5], and with 

regulation of biological channels [3.6]. 
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Simple numerical exemplification of anomalous independent walkers.- We start with a simple 

numerical example. In the left panel of Fig. 3, a trajectory from a simulation of anomalous 

independent walkers is shown in blue (upper curve in this panel). For making a comparison 

explicit, a trajectory from a corresponding renewal-anomalous file is also plotted (lower curve, 

black). The two trajectories are plotted as a function of the event index, namely, not versus the 

actual time. Clearly, this panel shows that only the trajectory of anomalous independent walkers 

exhibits anomalous patterns when plotted as a function of its indices. Importantly, the time 

vectors of files of anomalous independent walkers and files of renewal-anomalous walkers 

evolve in a similar way; this is shown in the right panel in Fig. 3 that plots these time vectors as a 

function of their indices. Basically, this figure shows that anomalous files with independent 

walkers are much slower than their renewal counterparts.   

 

 

 

 

 

 

 

Fig 3 Trajectories from an anomalous file of independent walkers (blue online, upper curve) and a 

renewal-anomalous-file (black online, lower curve), as a function of the event index, are shown on the left 

panel. For both trajectories,      ,     and   
 

 
 (the other file’s information is as in Fig. 1). 

Clearly, the anomalous trajectory of independent walkers shows anomalous patterns and not its renewal 

counterpart, when plotted versus its indices. The time vectors of both trajectories are of the same 

magnitude anywhere (right panel).  In this right panel the lower curve corresponds to the time vector of 

the renewal-anomalous file.  
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Equation of motion for anomalous files of independent particles.- When each particle in the 

anomalous file is assigned with its own jumping time drawn form       (      is the same for 

all the particles), the anomalous file is not a renewal file. The basic dynamical cycle in such a file 

consists of the following steps: a particle with the fastest waiting time in the file, say,    for 

particle  , attempts a jump. Then, the waiting times for all the other particles are adjusted: we 

subtract    from each of them. Finally, a new waiting time is drawn for particle  . The most 

crucial difference among renewal anomalous files and anomalous files that are not renewal is 

that when each particle has its own clock, the particles are in fact connected also in the time 

domain, and the outcome is further slowness in the system (proved in what follows). The 

equation of motion for the PDF           in anomalous files of independent particles reads:  

 

                               
  
 

                        ;           .       (12)      

 

Note that the time argument in the PDF           is a vector of times:           
 , and 

                  
 . Adding all the coordinates and performing the integration in the order of 

faster times first (the order is determined randomly from a uniform distribution in the space of 

configurations) gives the full equation of motion in anomalous files of independent particles 

(averaging of the equation over all configurations is therefore further required). Indeed, even Eq. 

(12) is very complicated, and averaging further complicates things. This is the reason that we 

derive scaling-laws and apply numerical simulations for solving anomalous files of independent 

particles. The main result is that such files form clusters of particles for anomalous   that pretty 

much stay in the spot for long times. This phenomenon of a phase transition depending on   is 
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unique, namely, it doesn’t occur in other types of files, and is reflected in the form of the 

equation of motion.  

 

III.b.2. The MSD & Numerical results 

Scaling law for anomalous files of independent particles.- Here, we study anomalous files of 

independent particles using scaling laws. Firstly, we write down the scaling law for the mean 

absolute displacement (MAD) in a renewal file with a constant density [1.12-1.14]:  

                 .        (13) 

Here,   is the number of particles in the covered-length      , and           is the MAD of 

a free anomalous particle,               . In Eq. (13),   enters the calculations since all the 

particles within the distance       from the tagged one must move in the same direction in 

order that the tagged particle will reach a distance       from its initial position. Based on Eq. 

(13), we write a generalized scaling law for anomalous files of independent particles:  

       
         

 
      ;         .      (14)    

   The first term on the right hand side of Eq. (14) appears also in renewal files; yet, the term 

     is unique.      is the probability that accounts for the fact that for moving   anomalous 

independent particles in the same direction, when these particles indeed try jumping in the same 

direction (expressed with the term,                  ), the particles in the periphery must 

move first so that the particles in the middle of the file will have the free space for moving, 

demanding faster jumping times for those in the periphery.      appears since there is not a 

typical timescale for a jump in anomalous files, and the particles are independent, and so a 

particular particle can stand still for a very long time, substantially limiting the options of 
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progress for the particles around him, during this time. Clearly,         , where        

for renewal files since the particles jump together, yet also in files of independent particles with  

   , since in such files there is a typical timescale for a jump, considered the time for a 

synchronized jump. We calculate      from the number of configurations in which the order of 

the particles’ jumping times enables motion; that is, an order where the faster particles are always 

located towards the periphery. For   particles, there are    different configurations, where one 

configuration is the optimal one; so,  

  
     . Yet, although not optimal, propagation is also 

possible in many other configurations; when   is the number of particles that move, then, 

      
 
 
       

 

  
, where  

 
 
        counts the number of configurations in which 

those   particles around the tagged one have the optimal jumping order. Now, even when 

     ,           . Using in Eq. (13),             (   a small number larger than 1), we 

see,  

     
 

  
 
 
        .         (15) 

(In Eq. (15), we use,         .) In Fig. 4, we show that results from simulations coincide 

with Eq. (14), for various values of  . Equation (15) shows that asymptotically the particles are 

extremely slow in anomalous files of independent particles. 

 

Numerical results of anomalous files of independent particles.- For figuring out even better the 

effect of this slowness in the scaling of the MSD on the level of the file, we perform extensive 

numerical simulations of anomalous files of independent particles. In the simulations,      , 

and the initial density is a constant with a distance of unity among the point particles. At the 

edges, reflecting boundaries are positioned at points,     . (We use units without dimensions all 
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over). Random jumping distances are distributed uniformly in about a unit interval centered on 

the origin,  

                             , 

where q is a random number in the unit interval. The reflection method is used in moving the 

particles, namely, a jump is made and the particles’ order remains.  

   Trajectories from simulations are shown in Fig. 4. Simulations were performed for ten values 

of   in the range of anomaly,             (in this range, the average of       is infinite), 

                                           . 

In addition, we performed two control simulations: one for a file of independent particles with 

       [that has a finite average for        and one for normal dynamics. 

 

 

 

 

 

 

Fig 4 Nine trajectories from anomalous file of independent particles plotted as a function of the cycle 

index, t; note that the actual time obeys the formula:       . Particles are initially positioned at the 

integers, here shown particles located initially in the range, 122-130. In the simulations,      ,     

(the initial distance among particles),     (the diffusion coefficient of the particles),        , and the 

jumping distance obeys,            , where   is a random number uniform in the unit interval. 

(Here, we use units without dimensions.) The upper panels show trajectories for        and the lower 

panels for       . Left panels show high resolution trajectories at the initial stage of the process. Right 

panels show trajectories at low resolution at the last third of the simulation (we plot the trajectory every 

seven thousand cycles). Trajectories in a cluster look in this plot as one trajectory. Clearly, trajectories 

attract each other stronger at small values of  . This is evident at short times and at large times. We also 

show the MSD for two values of   with fitting functions taken from Eq. (15).  
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Trajectories obtained from simulations are shown in Fig. 4 as a function of the number of the 

cycles  , where a cycle contains   attempts of jumping. The trajectories exhibit the phenomenon 

of clustering: namely, particles attract each other and then move pretty much together. It is also 

evident that the value of   and the number of cycles determine the degree of clustering in the 

system. We note that the results presented here are independent of the value for   and are 

qualitative identical for files with finite size particles (see the next paragraph, dealing with 

additional numerical results).   

       Characterizing the formation of the clusters, Fig. 5A shows        : the percentage of 

particles in a cluster at t for a particular  ; namely, the number of particles in clusters above the 

total number of particles. Here, when adjacent particles are at a distance not larger than 0.1, they 

are considered clustered. The curves height depends on  , yet when normalizing         with 

     [          ], the curves pretty much coincide with each other (Fig. 5B). In action, 

     is the average of the last 10% of the trajectory.      is shown in Fig. 5C with the optimal 

(4-parameter) fitting function,               
 

    
 
    

 
     

      . This fitting function is 

of the form of, 

           .        (16) 

When    , almost all particles are in clusters. The fluctuations in      are about 5% for 

     , and are about 0.5% for         (with about a linear interpolation with  ). The 

fluctuations in      represent the motion of particles among clusters. Namely, for a small value 

of   at steady state, the particles in a cluster move together, where at larger values of  , about 5 

percents of the particles diffuse among clusters. Since clustering occurs only for anomalous  , 

      describes the criticality of a phase transition. Indeed,       has a typical form for a scaling 
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function in critical phenomena [3.7] (see the next paragraph for further discussion about this 

point) 

 

 

Fig 5        , its normalized form and     . (A)         as a function of the event index t, for 10 values 

of anomalous  ,                                            , for the third (from the bottom) and on 

curves respectively, and the control curves: an anomalous file with        and a normal dynamics file 

(these curves are most lower ones and pretty much coincide with each other). The clustering phenomenon 

is unique for anomalous files of independent particles, representing a phase-transition depending on  . 

(B) Normalizing         with its asymptotic value     , all curves follow pretty much the same route. 

(C)      is shown on the right with its fitting curve,      . As   goes to zero, about 97% of the particles 

are in clusters.  

 

   Complementary information about the clustering is obtained from two additional functions: 

        and        . Figure 6A presents        : the percentage of clusters at t for a particular 

 , measured in terms of the number of particles. For relatively large values of  , the number of 

clusters is also large, yet, the clusters are smaller in size. The fluctuations in the number of 

clusters is also larger when   is larger. This is in accordance with the behavior of        . Panel 

6B shows                   versus   for all anomalous values of  . The optimal fitting 

function has the form,               
 

    
 
    

 
    

     .       follows closely a function 

of the form, 
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                       .          (17) 

      and       have complementary physical interpretation, seen in their scaling laws following 

(about),       .       quantifies particles in clusters, where the same number of particles can 

exist for a small or a large number of clusters.       simply counts clusters, and can have the 

same value when these are either small clusters or large clusters. Importantly, when clustering 

occurs, we see a small number of large clusters as   becomes smaller, where in a system without 

clustering, we may see about 10% of small clusters.  

 

 

 

 

 

 

 

 

Fig 6        ,     , and          and,     . (A)         as a function of the event index t, for 4 values 

of anomalous  ,                    , counting from the top curve. The percentage of clusters is 

smaller when   is small, since the clusters are larger at small  . (B)     , the steady state value for the 

number of clusters in percentages is shown with its fitting curve,      . As    , the percentage of 

clusters is 3%. (C)         as a function of the event index t, for the 4 values of anomalous   in (A), 

counting from the lower curve. The average size of a cluster is large when   is large. Here, the average 

cluster can contain, momentarily, about 10% of the particles. (D)     , the steady state value for the 

average size of a cluster (in percentage) with its simple fitting curve,      . As    , the average 

cluster’s size is 33. 
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Figure 6C presents the average size of a cluster,         [                ]. Here, fluctuations 

are larger when   is small. Panel 6D shows     , the asymptotic value of the a cluster’s size, 

              , with its simple fitting function, 

                .           (18) 

Interestingly, the average size of a cluster is limited with about 33 particles when    , where 

clustering disappears when    , further quantifying the phase transition.  

 

Additional Numerical Results: a large file and a file with finite size particles.- In this part, we 

show results for a file with several thousand particles and for a file with finite size particles. The 

behavior of these files coincide with the behavior of the file reported in the previous part; 

namely, clustering is indeed a stable phenomenon in anomalous files of independent particles 

and holds in small and large files and in files of point particles and of finite size particles.  

 Files with finite size particles.- Firstly, we present results in an anomalous file of independent 

particles of finite size. In the simulations, each particle is of a size of 0.01. (We use quantities 

without dimension all over.) Initially,   particles are located in a symmetric way around the 

origin at a distance of 1.11 from each other, where        and here      . Each actual 

jump obeys,            , where    ,        , and   is a random number taken from 

the unit interval. After each jump the particles are ordered, and are moved such that they are not 

overlapping. When adjacent particles are at a distance not larger than 0.1329, they are considered 

clustered.    

   We report on results for         and     ,         and      and         and     . We recall:  

        : the number of particles in clusters over the total number of particles as a 

function of    and  . 
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               , calculated as the average of the last 10% of the trajectory 

        : the number of clusters over the total number of particles as a function of   and   

               , calculated as the average of the last 10% of the trajectory 

        : the average number of particles in a cluster as a function of    and   

               , calculated as the average of the last 10% of the trajectory 

   We note that the results reported here were tested with several types of algorithms for 

simulating finite size particles. It is important using a continuous coordinate and a continuous-

motion-technique (jumps are made and then the particles are ordered and moved such that they 

are not overlapping). Nevertheless, this is the most physical way of simulating finite size 

particles in a file, since particles in nature move in a continuous way, and when they bump each 

other they can exchange momentum for an incremental distance (in a medium of a finite 

temperature).  

   Figure 7 shows         (left panel) as a function of   for several values of  , 

                                ,  

and its steady function      as a function of   (right panel). The forms of these quantities 

coincide with the forms of the corresponding quantities in files of point particles. In particular, 

the fitting function for     ,      , follows the form, 

                
 

    
 
    

 
     

      .       (19) 

This is a particular case of the general formula used also for point particles,  

            
 

  
 
   

 
 
  

   .      (20) 

Excluding the first parameter   , that here equals,           and equals,        , for point-

like particles,       is identical in both cases.  
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Fig 7         (left panel) as a function of the cycle index t for 7 values of   (specified in the middle 

panel) and its steady state function      (right panel) from trajectories of files of anomalous, 

independent, particles of finite size. In the simulations,      ,  the size per particle is 0.01,        

(the initial distance among particles),     (the diffusion coefficient of the particles),        , and the 

jumping distance obeys,            , where   is a random number uniform in the unit interval. 

(Here, we use unite without dimensions.) Reflecting boundaries are positioned at a distance of 27 integers 

relative to the initial position of the particles at the edges, in the direction that extends the interval. When 

adjacent particles are at a distance not larger than 0.1329, they are considered clustered.         and      

have the same form seen in the case of point particles, yet here,         has a smaller value of about 5 

percent relative to a file of point particles. 

 

 

     Now, figure 8 shows the behavior of         and     , and         and      for finite size 

particles. The fitting function for a file of     ,       , follows the form, 

              
 

    
 
    

 
    

     .      (21) 

Again, this fitting function       obeys the exact same general form as in a file of point-like 

particles, 

            
 

  
 
   

 
   

   .      (22) 

Here the difference is in    (        here and         in a file of point-like particles) and in 

    (          here and           in point-like particles). The fitting function for the average 

number particles in a cluster     ,      , obeys, 

α=3.37 

α=0.9 

α=0.7 

α=0.5 

α=0.024 

α=0.3 

α=0.1 
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                   .       (23) 

Again, this is the a particular case of the general form, 

                ,        (24) 

found also for point particles. Both parameters of the linear function       are three times smaller 

here compared with the case of point particles; mathematically, this is a direct consequence of 

the difference in the parameters of       among the files: since the number of clusters is larger 

here (2.9 times larger), yet the total number of particles in clusters is about equal, the average 

number of particles in a cluster is smaller (about one third). 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 8 Finite size particles.-         (upper left panel) as a function of the cycle index t for several values 

of   (                    from the lower curve) and its steady state function      (upper right panel), 

        (lower left panel, where here, curves with smaller values of   are on top) and its steady state 

function,     .        is about three times larger in finite size particle file, and      is three times 

smaller.  

 

A larger file.- Here, we examine the behavior of a file with several thousand particles. Initially, 

  particles are located in a symmetric way around the origin at a distance of 1 from each other, 

where        and here        (this file is about five times larger than the files 

Flies of finite size particles 
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presented in the previous paragraphs). The fastest particle attempts a jump, and the random times 

are adjusted. Each actual jump obeys,            , where    ,        , and   is a 

random number taken from the unit interval. After each jump the particles are ordered. 

Reflecting boundaries were placed at a distance of unity from the particles at the edges in the 

direction that extends the interval. When adjacent particles are at a distance not larger than 0.1, 

they are considered clustered. Results were collected for the following values of  , 

                          .        (25) 

The results are reported in Fig. 9 showing     ,     , and     , and their fitting functions.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

represents only very small clusters, and doesn’t reflect the clustering phenomenon that the function      

represents (small values in      stands for very large clusters). The lower right panel shows      (blue 

asterisks) the fitting function in Eq. (28), red dashed curve, the fitting function        of the smaller file 

(green dashed curve), and the average size of a cluster in a file with        (the light blue horizontal 

dashed line).  

Fig 9     ,     , and      for a file of 2274 point 

particles. The left panel shows      (blue asterisk) 

the fitting function       in Eq. (26) and the level 

of clustering in a file with        (red circles). 

The upper right panel shows      (yellow 

triangles) and the fitting function       presented 

in Eq. (27). The clustering level in a file with 

       is about 0.1, and is not shown as it 

represents only very small clusters, and doesn’t 

reflect the clustering phenomenon that the function 

     represents 
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The fitting functions of     ,     , and     , obey the same general formula introduced in Eqs. 

(20), (22), (24), respectively. In particular, we find the following fitting functions:    

              
 

    
 
     

 
   

     .      (26) 

               
 

    
 
   

 
   

     .      (27) 

                   .        (28) 

These results are in accordance with the results of the smaller file. Namely, the clustering is 

independent of the number of walkers in the file, and thus it is a general phenomenon. 

 

III.b.3. Discussion on anomalous files of independent particles 

Characterizations of the clustering.- Firstly, we recall that slowness is expected in files of 

anomalous independent particles since the order of the jumps that enables motion is 

exponentially small (with the number of particles that are suppose moving) and the dynamics are 

without a typical timescale. For further explaining the clustering, we look on the actual values of 

the jumping times of the particles after a while that the process has been going on; see Fig.10. 

(These are the quantities discussed in the derivation of the MSD, around Eq. (15).) It is clear 

from Fig. 10 that when   decreases the typical value for a jumping time increases (here, the 

typical time is the jumping time of most of the particles). The interesting issue here is that when 

  decreases there is a phenomenon that only a few particles are significantly faster relative to all 

the others. This tells the story of the clustering and the phase transition: when one particle jumps 

over and over and over again, it clusters the particles around him, since when only a particular 

particle moves repeatedly several times, it closes the gap among the particles around him among 

themselves, such that they are and eventually clustered.   
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Fig 10 The logarithm of the band of jumping times after about 7 hundred thousand cycles for a system of 

about 500 point particles for several values of   . The arrows indicate on the fast jumping times in the 

range considered small   values (     ). 

 

 

       How can we explain the form of the fitting functions? Firstly, we note that the fitting 

function of       has a standard form for a scaling function at criticality of a phase transition 

[3.7]:             (where a function in   can replace   in generalizations).      and      

pretty much follow from     .      is complementary to     , since it has such a physical 

interpretation, and      is the ratio of the previous ones.  

       Now, for further supporting the form of the fitting function of     , we calculate the PDF of 

slowest jumping time when there are     jumping times in the band: 

                         
 

 
 
 

          
  

.       (29) 

We emphasize the following three points: 



III. Anomalous files: renewal ones and independent ones 

78 
 

(1)              is very small for times smaller than,        , that is the time when the 

argument of the exponent     
  

 is unity.  

(2)    is the typical timescale for most of the particles in the file, in the limit of many cycles. This 

is indeed seen in Fig. 10. The reason is very simple: after many cycles, most of the particles are 

extremely slow, since only the fast ones move and after several jumps the anomalous properties 

of              ‘assign’ the particle a very slow jumping time. 

(3) When calculating the first and the second moments of              in the range     , we 

find,            and            . This should reflect the properties of the fast particles 

until the time   . It is evident that a transition occurs in the second moment when      : 

     vanishes when      , yet scales with   when      . Namely, for       many of 

the (relative) fast particles are slower than   , yet when      , most of the (relative) fast 

particles are indeed faster than   . This behavior is indeed seen in Fig. 10: when       fewer 

and fewer particles are seen in the range     , yet when       we see many particles in this 

range. This is reflected in the behavior of the file: the file contains many small clusters when 

     , yet only a few clusters, nevertheless larger, when      .       and       capture this 

property.     

 

Anomalous files in two dimensions.- Now, we also find that clustering is seen in anomalous files 

embedded in two-dimensions, creating a network of isotropic files, like streets and junctions in a 

city (see Fig. 11). Indeed, this system is a generalization of a one-dimensional file studied 

throughout this chapter, and it is defined with two free parameters: the percentage of 

intersections (without directional preference in intersections) and the length of the interval until 

an intersection occurs. We study files that intersect each other for 1% every interval of 10 (see 
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the comprehensive analysis in the next paragraph). Among other results, we find that in such a 

system 50% of the particles are in clusters when    . Indeed, the results are sensitive to the 

branching parameters: when branching occurs in smaller intervals, clustering decreases, and we 

can speculate that when diffusion happens in two dimensions (not in a network of one-

dimensional files), the clustering phenomenon is not observed when the density is reasonable 

(not too high). This is in accordance with known results showing that the slower diffusion so 

typical for a particle in a file in one-dimension does not hold for diffusion of hard particles in 

two-dimensions, where in such a system a standard diffusion is seen (when the density is not too 

high). Still, we have chosen here reasonable parameters for the branching: the average size of a 

jump is 0.25, and the branching occurs every interval of 10; this is not too small interval so 

branching indeed has a role (seen also in the results), still the branching happens after frequent 

enough jumps and the clustering is indeed seen.    

 

 Analysis of anomalous files embedded in two dimensions.- Here, we test the occurrence of the 

clustering phenomenon in an ordered network of files embedded in two dimensions forming an 

isotropic network of files and junctions. This system can mimic diffusion in a membrane that has 

many obstacles for the diffusing objects, forming streets and junctions. We show that clustering 

occurs also in this system. Indeed, further study of the dynamics of independent anomalous 

particles in files embedded in two-dimensions and even in three-dimensions is needed; still, from 

the results reported here we can related the critical phenomenon of clustering with rafts in 

membranes. This is discussed in the next title, where here we present the results from the 

simulations. 
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   In files embedded in two dimensions, we have two free parameters defining the system: the 

percentage of intersections and the length of the interval until an intersection occurs. In the 

current system, files intersect each other only 1% of the time, every interval of 10 (see figure 11 

for an illustration).  

 

 

 

       

     

 

 

 

Fig 11 (A) An illustration of files embedded in two dimensions, with 1% branching every interval of 10. 

At the end of every interval of length 10 in a given direction there is a possibility for branching for a 

length of 0.1 (the colored squares). Here, particles are marked with circles. (B-E) Here, we present the 

particles at the initial stage of the process (B) and at the end of process (after about 733 thousands cycles), 

for       (C)       (D), and       (E). In these plots, a cluster is seen as a dense area of particles 

with areas free of particles around it.  

    

 

       Mathematically, we define files in two dimensions in an area       : in  -files,   is a 

continuous coordinate, and   is an integer,                  In  -files, set    . In the 

simulations,      particles were located in 20 one-dimensional files: 10  -files (constant  ) and 

10  -files (constant  ). In each file there are 99 particles; the particles are located around the 

origin, in a symmetric way, a particle every 0.88. At about,        , we put reflecting 

A 

B C 

D E 
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boundaries. See Fig. 11 for an illustration of the system, the initial configuration and the final 

configuration for various values of   in the area        after several thousand cycles.   

     The quantities         and      and         and      and         and      are calculated 

for this system, and are presented in Fig. 12. Results are calculated for, 

                            .       (30) 

Figure 12 shows the quantities        ,         and         calculated in a similar way for files 

embedded in one dimension: each one dimensional file (with a constant   or a constant  ) is 

calculated as an independent file, clustering is when particles are at a distance of 0.11 or smaller, 

and then an average is applied. The familiar forms of these quantities seen in files embedded in 

one dimension are observed also in files embedded in two-dimensions with 1% branching every 

interval of 10. Namely, clustering occurs even when the files are embedded in two dimensions.  

 

 

Fig 12        ,         and         for anomalous files of independent particles embedded in two 

dimensions with 1% branching every interval of length 10. In the left panel, shown is         for   

values presented in Eq. (30) (curves with larger values of   are of smaller height). The middle panel 

shows        ; each curve with a particular   has the same color used its counterpart         shown in 

the left panel. Here, the number of clusters is about the same for all values  , and this means that the 

clustering is a bit weaker here relative with the clustering of a file embedded in one dimension. There are 

a lot of free particles and a lot of small clusters. This is seen explicitly in the right panel when plotting the 

number of particles in a cluster versus t for the various values of  . Clusters are indeed smaller relative 

with files embedded in one dimension, still there is a prominent effect of an increase in the average 

number of particles in a cluster when   decreases.    
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Figure 13 quantifies further the clustering in files in two dimensions when showing the quantities 

    ,      and     . The fitting functions show that the branching affects the degree of 

clustering: here, 55% of the particles (relative to a file in one dimension) are in clusters. Still, 

when comparing the results in the two dimensional system for the various values of  , we see 

that when    , the percent of clustering is five times larger compared with       . This 

indicates on a prominent clustering in anomalous files of independent particles in two 

dimensions relative with other files’ types in two dimensions.  

 

 

Fig 13     ,     , and      for files embedded in two dimensions with 1% branching every interval of 

10. In every figure the horizontal curve stands for the result for       . The fitting curves for      is 

obtained for the first 4 points excluding the fifth. For the specific forms of the fitting functions, see Eqs. 

(31)-(33). These plots show that clustering is indeed seen in 2d-files with 1% branching every interval of 

10.  

 

     The fitting functions shown in Fig. 13 obey the formulae in Eqs. (20), (22), (24), of the file 

embedded in one dimension: 

              
 

    
 
     

 
     

       .     (31) 

      follows:   

              
 

    
 
     

 
    

.       (32) 
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      follows:   

               .         (33) 

The fact that the fitting functions obey the same general formula seen in the one dimensional 

files further support the occurrence of the clustering in an isotropic network of files embedded in 

two-dimensions.  

 

Anomalous files, rafts and channels.- An isotropic network of files embedded in two-

dimensions enables relating the clustering with rafts: a raft in a (two-dimensional) membrane is a 

dense patch of specific lipo-molecules [3.5]. The mechanism of the formation of these patches is 

still not clear, yet it is known that rafts do not largely occur due to an electrostatic attraction. We 

think that the phenomenon of clustering in anomalous files of independent particles can explain 

rafts in membranes: given that the lipo-molecules diffusion is anomalous (anomalous diffusion is 

common in membranes), they will form rafts, since diffusion in biological membranes is 

describable with the model of an isotropic network of files in two dimensions. This statement is 

based on the known fact that the membrane is composed from a mosaic of areas of different 

compositions, where these have different viscosities; this may indeed cause the diffusing objects 

see the diffusion like diffusion in tunnels with junctions (embedded in two dimensions).      

       Finally, we expect that the clustering phenomenon is universal and holds in a wide range of 

external conditions, since the diffusion coefficient of the particles does not affect this 

phenomenon, yet  , the only other external parameter here, is the control parameter. Since 

clustering is expected universal, it may be used in regulating biological channels, an important 



III. Anomalous files: renewal ones and independent ones 

84 
 

topic in biophysics, e.g. [3.6]; this is achieved when controlling the phase of the anomalous 

particles in the channel, clustered or diffusing, using one of two possibilities:  

 When changing   such that it is either smaller than 1 or larger than 1, we can cause the 

system having either an infinite typical timescale or a finite typical timescale. For a finite 

timescale, diffusing is seen, where for an infinite timescale clustering is expected. 

 When controlling the synchronization of the particles, either having a file made of 

synchronized anomalous particles or having a file made of independent anomalous 

particles, we nicely have the possibility of seeing either a diffusing phase (for 

synchronized) or a clustered phase (for independent particles).   
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