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Abstract – Normal dynamics in a one-dimensional channel of length L (→∞) of N hard spheres 

are analyzed. The spheres are heterogeneous: each has a diffusion coefficient D that is drawn 

from a probability density function (PDF),      , for small  , where 0≤γ<1. The initial 

spheres' density   is non-uniform and scales with the distance (from the origin)   as,      , 

0≤a≤1. An approximation for the N-particle PDF for this problem is derived. From this solution, 

scaling law analysis and numerical simulations, we show here that the mean square 

displacement for a particle in such a system obeys, <r2>~t(1-γ)/(2c-γ), where          . The 

PDF of the tagged particle is Gaussian in position. Generalizations of these results are 

considered. 
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Introduction. - Diffusion is among the fundamental processes in condensed matter physics, 

chemistry and biology, as it affects the behavior of many complex processes in these fields, e.g. 

[1-4]. An important process in the study of diffusion is file dynamics (also known as single file 

dynamics) [4-38, 41]. Put simply, it is a process of N identical particles (hard spheres) that 

perform normal stochastic diffusion, with the same diffusion coefficient D, in a cylinder, or a 

strait, of length L (L → ∞). The mean particles’ density, ρ, is fixed: ρ=ρ0=N/L. (This means that 

the mean microscopic distance between adjacent hard spheres is fixed and follows, Δ=L/N, 

where Δ can’t be smaller than the particle’s diameter). The dynamics of hard spheres in a strait 

is a very realistic model for many microscopic processes [1,30-37]; for example: (a) diffusion 

within biological and synthetic pores, and in porous materials, of water, ions, proteins, and 

organic molecules [1, 30]. (b) Diffusion along 1D objects, such as the motion of motor-proteins 

along filaments [1]. (c) Conductance of electrons in nano-wires [37]. (d) Single file dynamics has 

also been related to monomer dynamics in a polymer: both systems share a similar scaling law 

for the MSD of a tagged monomer [29, 34]. 

     The most well-know property of file-dynamics is the scaling of the mean square displacement 

(MSD) <r2> of a tagged particle in the file: <r2> ≈ (Dt)1/2/ρ0. This result is unique. It is much 

slower than the MSD of a free meso-scopic particle diffusing in solution, for which, <r2>free≈Dt. 

Clearly, a tagged particle in a file is much slower than a free particle as it can only move when 

other particles move in the same direction. Still, the special scaling of <r2> with time reflects a 

unique mechanism of motion. In Ref. [23], we have derived a general relation between the 

behavior of a free particle and of a tagged particle in a file (that have the same underlying 

dynamics) that captures some of this uniqueness:    
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<|r|> ≈ <|r|>free/n.                               (1) 

Here n is the number of particles in the covered length <|r|>. Equation (1) holds when the file 

has a fixed density on average (<|r|> ≈ n/ρ0), and this leads to, 

<|r|> ≈ ρ0
-1/2<|r|>free

1/2.                                                     (2) 

Equations (1)-(2) show that when diffusing a distance r, the tagged particle slows down relative 

to a free particle as it can only move when coordination with the file particles is achieved, and 

this coordination is proportional to one over the number of particles in the distance r. The 

relation in Eq. (2) leads to the famous MSD in a normally diffusive file, that is, <r2> ≈ (Dt)1/2/ρ0. 

     Yet, there are many other known statistical properties of the file-dynamics [4-27]: (a) The 

PDF of the tagged particle is asymptotically Gaussian in position [5]. (b) The motion of the 

particles is correlative, namely, a cloudlike-motion is seen in the system [9, 18]. This cloud of 

particles is not of a constant density, namely, fluctuations in the particles’ density are observed 

[9, 18]. (c) The microscopic single event PDFs in time and space have finite moments [17]. (d) In 

dimensions larger than one, a tagged hard sphere in the presence of hard spheres diffuses 

normally [9]; namely, in such a system the MSD of a tagged particle is linear with time. (e) For a 

deterministic basic single file with momentum exchange upon collisions, the tagged particle’s 

PDF is also Gaussian but with a variance that scales as the time [6] (note that Eq. (2) still holds).       

(f) We note that in this Letter, the statistics of the particles at the edges of the file are not 

considered as special particles. Indeed, in a file with a finite number of particles, yet of infinite 

length, the particles at the edge of the file can diffuse freely to the side not bounded by 

particles. For an analysis that focuses on this point, see Ref. [25]. Here, we focus on the particles 
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in the middle of the file. In this regard, the tagged particle represents the particles in the middle 

of the file. 

     Still, in realistic systems, one, or several, of the conditions defining the basic file may break 

down, and this may lead to different dynamical behaviors. For example, in a quasi-1d channel, 

the particles may bypass each other with a constant probability upon collisions [19-22], and this 

leads to an enhanced diffusion. Yet, when the particles interact with the channel, a slower 

diffusion is seen [15]. An important generalization in file-dynamics takes the initial particles’ 

density law to scale with the distance [23], 

         
   ;                  ,                (3) 

meaning that the initial number of particles   as a function of the length   obeys,           . 

     in Eq. (3) is the initial density of the file: the particles are initially positioned at, 

x0,j=sign(j)∆|j|1/(1-a), for |j|≤M, N=2M+1. Among the possible realistic choices for a particle-

distance law (e.g. an exponential, a Gaussian, or a power-law), the one that affects the scaling 

of the MSD is a power-law. This is shown when calculating the MSD for a system obeying Eq. (3). 

We find that the tagged particle’s mean absolute displacement obeys *23+, 

<|r|> ≈ ρ0
(a-1)/2<|r|>free

(1+a)/2.                              (4) 

As a→0, we recover the standard result, <|r|> ≈ ρ0
-1/2<|r|>free

1/2. This equation means that only 

a power-law density law can influence the scaling of the MSD; namely, when the distance 

between particles is not enough, as in a power-law density law, the scaling of the MSD is not 

affected by the fluctuations in the distance particles.    
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Now, <|r|> in Eq. (4) holds for any renewal N-body underlying dynamics and for the density in 

Eq. (3). Here, a renewal file is a file in which all the particles are available to jump at the same 

time. If the underlying dynamics of the particles are not Markovian, a renewal file is a file in 

which all the particles attempt to jump at the same time. This means that the equation of 

motion for the N-particle PDF is a simple convoluted equation with the normal dynamics 

operator. 

     Equation (4) generalizes Eq. (2). Still, this generalization is limited to the other conditions of a 

basic file. 

     In this Letter, we deal with heterogeneous files. In a heterogeneous file, the particles’ 

diffusion coefficients are distributed according to a PDF; here, we use, 

        

 
 
 

 
 
  

,           ,                  (5) 

where   is the fastest possible diffusion coefficient in the file. The initial conditions are 

distributed according to Eq. (3). In a series of analytical and numerical calculations, we show 

here that the MSD for the tagged particle in such a file follows, 

  
         

                  ,            .  (6)                           

The corresponding PDF is a Gaussian. Generalizations and implications of these results are 

considered. 

Calculating file-PDFs. - In this paragraph we calculate the PDF of the tagged particle in a 

heterogeneous file from the joint PDF for all the particles in the file,          . Here, 

                   is the set of particles’ positions at time  , and    is the set of the 
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particles’ initial positions at the initial time,   , which is set to zero. The tagged particle is taken 

as the middle particle in the file. The following calculations for           are based on our 

analysis of simple files [23], and so we concisely present these calculations first; an elaborated 

discussion of our previous calculations is presented in appendix A of this paper. 

     In a simple file,           obeys a simple normal diffusion equation, 

                             
 

    
.                         (7)         

Equation (7) is solved with the appropriate boundary conditions, which reflect the hard-sphere-

nature of the system:                       
        

                  for             ,     

and with the appropriate initial condition: 

                       
 

    
          ;                 .        (8) 

The PDFs' coordinates must obey the order:               . The solution of Eq. (7) is a 

sum of products of Gaussians [23-27], 

          
 

  
  

  

   
             

 
 

    
 .      (9) 

In Eq. (9), the external sum is over    permutations of the initial conditions. The factor that 

takes care for the normalization is   , and this its only meaning everywhere it appears in this 

paper. Equation (9) is understood under the condition that the coordinates are ordered. 

Equation (9) is a direct result of the Bethe ansatz for linearly coupled particles [38]. 
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     Equation (9) is the starting point for finding the PDF of a tagged particle in this file,       

   . In Ref. [23], we have estimated this PDF as, 

          
 

  
  

  

   
              

 
 

    
   

 

  
 
   

 

   
   
   .      (10) 

In Eq. (10),        . Equation (10) is a result of lengthy calculations, and assumes the limit of 

long times. The full details of the calculations that relate Eq. (9) and Eq. (10) were presented in 

Ref. [23]; yet, these are presented here also, in appendix A. In what follows, we highlight the 

important steps of these calculations. We start with Eq. (9), and first integrate the file-

coordinates excluding the tagged particle’s coordinate. Then, we count the important 

permutations that contribute to the sum of permutations, after the integration; these then form 

the values of   . Once we know     , we can further estimate           with the inequality. The 

inequality simplifies the expression for          , as the last term in Eq. (10) is a summation 

over a constant; namely the sum counts particles, and so its solution is  : the number of 

particles in the length   .    is found from the equation, 

     

    
  .  

This relation for    is a result of our approximation that each exponential factor is a kind of a step 

function, where the step function is non-zero for a width equal to the variance of the 

exponential argument. As in a constant density file the distance is proportional to the number 

of particles in it,       , we have,        , and thus, 

          
 

  
 
   

 

   
  

 

  
 
   

 

   , 
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where,         and         are the dimensionless distance and time respectively.  

     Once the relation connecting Eq. (9) and Eq. (10) is established, we can use a corresponding 

relation for deriving the PDF of the tagged particle in a heterogeneous file. Clearly, we need first 

to solve the equation of motion for the N-particle PDF for this file: 

                              
 

    
,                                 (11)         

subjected to the boundary conditions:     

                       
           

                      ;                 ,          (12) 

and with the initial condition, Eq. (8). We approximate the solution of Eqs. (11)-(12) as,   

           
 

  
  

  
            

 

    

 
    

 .       (13) 

Equation (13) is our first main result in this paper. This equation was written in analogy to Eq. 

(10). To test the quality of the approximation, we plug it in the diffusion equation for a 

heterogeneous file, Eq. (11). We find that Eq. (13) indeed fulfills Eq. (11). Equation (13) also 

fulfills the initial condition, Eq. (8). Yet, Eq. (13) only approximates the boundary conditions, Eq. 

(12). Yet, a simple analysis shows that the approximation in Eq. (13) becomes more and more 

accurate for large times. (A full analysis of Eq. (13) is presented in Appendix B.) 

     Using Eq. (13), we approximate the PDF of the tagged particle in the heterogeneous file as, 

          
 

  
  

  
             

 

    

 
    

   
 

  
 
   

 

  
     
 
   .     (14) 
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Here,        . Equation (14) is based on the same approach that relates Eq. (9) to Eq. (10). 

(Additional technical comments on this relation are presented in Appendix C.) Yet to proceed, 

we need to calculate the sum in last factor in Eq. (14). These calculations are more complicated 

than those performed for the simple file. Firstly, for a heterogeneous file that its diffusion 

coefficients are drawn from Eq. (5), any group of   particles (taken from the   particles in the 

file) must have the following values for their diffusion coefficients (see Appendix D for the 

derivation), 

                       ;      , 

where the values of the diffusion coefficients are ordered from the largest to the smallest. (This 

relation’s accuracy increases as    .) Secondly, we need to find     . This is found from the 

equation: 

      

   
  .       (15) 

Relation (15) represents the arguments in all the exponentials in Eq. (14).       is simply found 

from the density law in the system,            . The diffusion coefficient   
  appearing in Eq. 

(15) must represent a bunch of slow particles in the interval that has in it   particles, as these 

particles affect the result the most. Yet,   
  is a typical slow diffusion coefficient, and not 

necessarily the slowest. We estimate   
  as,   

            . The derivation of this relation is 

spelled out in the next paragraph. Here we note that as   tends to one,   
  reaches the value of 

the slowest diffusion coefficient in the interval containing   particles. Yet, for a relative fast 

system   
  approaches a constant independent of the number of particles in the interval. A 

similar trend in seen in the behavior of the average diffusion coefficient, which vanishes as   
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goes to one and has a non-zero value as   tends to zero. Using the above expressions for       

and   
  in Eq. (15), we find, 

   
          

        .     (16) 

With Eq. (16), we use Eq. (14) to derive the PDF for the tagged particle in a heterogeneous file: 

          
 

  
 
   

 

  
    

   

 
 
  
    

    
 

  
 
   

 

  
 

 
   

 
 

  
 
   

 

  
 

     
        

.             (17) 

A Gaussian PDF is specified through its variance, and so, 

   
     

   

    ,                  .                   (18) 

Equations (17) and (18), together with Eq. (13), are the major results in this paper. Note that Eq. 

(18) is obtained from Eq. (17), and so it is the upper bound of the MSD of this file. Yet, we show 

in what follows, in scaling law analysis and in simulations, that this is in fact the asymptotic limit 

of the actual MSD.   

     Examining Eq. (18), we note the following. In the limit of γ = 0, <Rd
2     τ(1+a)/2. This result is 

equivalent to Eq. (4) for normal diffusive file. This result is important as it means that when 

there are not enough slow particles in the file, the MSD scales in the same way as of a simple 

file. Thus, this result gives the criteria when W(D) affects the diffusion process significantly. In 

the limit of a constant density, a=0, we have, <Rd
2> ≈ τ(1-γ)/(2-γ). Here, when, γ→1, <Rd

2>≈1, 

namely, in this limit the system is frozen. 

     Equation (18) also predicts a cancellation of opposing effects: the slowing down in the 

diffusion due to many slow particles and the enhancement in the diffusion due to the decay in 
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the density of the particles can cancel each other. For example, when: a=γ/(2-γ), a simple file 

scaling is seen, <Rd
2>    τ1/2, yet the actual file is heterogeneous. 

     Finally, we note that a very different result for the MSD than the result in Eq. (18) is obtained 

in a heterogeneous file obeying Eq. (5), when all the particles start at the origin; see Ref. [25] for 

discussion.  

Scaling law analysis. - In this paragraph, we derive a scaling law for <|r|> in a heterogeneous 

file with a constant density. This supports our results of the previous paragraph, Eq. (18), and 

further illuminates the behavior in heterogeneous files. We start with the following set of 

relations, 

<|r|> = <|r|>free/n = Δ1/2<|r|>1/2
free ≈ Δ

1/2[D(<|r|>free)t]1/4.         (19) 

 Equation (19) is similar to Eq. (1): n is the number of particles in the cover length, yet <|r|>free 

reflects a free particle dynamics with a modified diffusion coefficient, <|r|>free≈[D(<|r|>free)t]1/2.  

D(<|r|>free) should reflect the fact that in an interval of length <|r|>free there is a typical 

diffusion coefficient that represents all the particles in this length, as we substitute one for 

many. Clearly, D(<|r|>free) is among the slowest ones in the interval <|r|>free. Still, it should 

represent a bunch of slow particles, and not merely the slowest one. To estimate D(<|r|>free), 

we first derive the PDF of the smallest diffusion constant,     , among   particles, denoted as 

         . The diffusion coefficients of the particles are drawn independently of each other, 

and so this PDF obeys, 

                           
 

    
  .    (20) 
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The factor         is the PDF that the slowest diffusion coefficient has a value of     and the 

integral to the power of   is the probability that all the other particles have diffusion 

coefficients that are larger than     . A normalization constant doesn't affect the following 

calculations, and it is omitted. Using Eq. (5) in Eq. (20), we find (for    ), 

                                    
    (21) 

Equation (21) has the typical form of a PDF in extreme value statistics [39]. We use this PDF to 

link a typical small diffusion coefficient to  . For this, we look on the exponential factor in the 

PDF,               
, and notice that only when the condition,                , is met, a large 

probability can be assigned for small values of     . Solving for      , we find,       

          . Using       in Eq. (21) leads to, 

                       .      (22)     

We define the typical small value for a small diffusion coefficient for a large n, denoted as      , 

as one over the PDF           , 

                           .   (23) 

Equation (23) was used in the previous paragraph to derive Eq. (17). Substituting Eq. (23) into 

Eq. (19), with                
  and   in Eq. (16), leads to, 

        
   

      .                                          (24) 

Equation (24) is the same as Eq. (18) for    , with,    
          . Namely, eq. (24) supports 

the results obtained in the previous paragraph. Indeed, both calculations rely on the same form 
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for   
 , yet these calculations have different starting points. Note that the scaling law considered 

here holds for a=0. In a file with a non-uniform particles' density, the file’s density doesn't scale 

with the distance in the sense that a given interval of length   taken from the file at different 

locations along the file has a different density of particles. Thus, any scaling law for a non-fixed 

density file must rely significantly on known results. Starting from Eq. (19), we do not need to 

rely on known results. Yet, the reader can find in Ref. [23] a scaling law analysis that uses also 

known results, to derive scaling laws for non-uniform files. 

     Scaling law analysis enables to generalize the results for files with different kinds of 

dynamics. We consider here deterministic files. A deterministic file is a file in which the particles 

are Newtonian and each particle is assigned an initial velocity    with equal probability. In a 

simple deterministic file, the PDF of a tagged particle is a Gaussian with a variance that scales 

linearly with time. What is        when the value     is drawn from a PDF of the form of Eq. (5) 

with equal probability for any direction? Starting from Eq. (19), we find, 

                 
   

   ,     (25) 

where      is a characteristic velocity in the system. Equation (25) is calculated in a similar way 

to the analysis of this paragraph. Equation (25) shows that as γ→1 the deterministic file freezes 

and as γ→0 the file behaves as a simple deterministic file. 

Results from simulations. - We perform off-lattice simulations of Eq. (11) with hard core 

interactions between point particles. The fact that the particles are point-like reflects the 

equation of motion, yet, does not change the long time statistics of the file compared to 

simulations of files on lattices. (In fact, simulations are always lattice-like as the smallest length 
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scale is limited by the precision of the machine.) In the simulations, each particle is assigned a 

diffusion coefficient from the PDF in Eq. (5) (Λ=1 in the simulation). The jth particle is positioned 

at, x0,j=sign(j)|j| 1/(1-a)∆ (∆=1.3 in the simulation). We set N=501 particles. In each time step (dt = 

0.13 in the simulations), each particle is moved relative to its position according to the 

equation,                  , where   is a random number from the unit PDF, and is 

chosen for each particle at each time step. The particles’ locations are ordered after each time 

step. The interval’s length is bound: edges particles can’t move further than their initial 

conditions plus a room for several full jumps in the direction that extends the initial interval 

length. The above iteration scheme is executed over and over and over again (three millions 

time steps are used in each simulation). Note that in the above simulations’ rules, the boundary 

conditions are always fulfilled. Also, note that the above simulations’ rules were also used for 

simple files; e.g. files with the same diffusion coefficient. Yet, these rules hold also for the 

heterogeneous file. Here, the reflection principle (that is, the ordering of the particles after each 

cycle of jumps) represents: (a) elastic collisions among particles that can clearly also represent 

particles with distribution of diffusion coefficients, and (b) Brownian dynamics, so the particles 

momenta decay after each jump relatively fast, and so in the next cycle of jumps the particles 

do not drag previous velocities.  

     We perform extensive simulations. Each simulation has different values for a and γ where, 

a=0, 1/3, 2/3, and, γ=0, 1/3, 1/2, 2/3. In each simulation, we calculate the MSD for thirty 

particles from the file. For each simulation (defined with a specific values for γ and a), the run 

time for the simulation and the MSD-calculations is three minutes on a standard 3.33 GHz PC. 

This is fairly fast (only straightforward coding were used). 
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     Figure 1 presents the results for the MSD from all the simulations. Each panel shows MSD-

curves for three values of a each with the same value of γ. The analytical curves obtained from 

Eq. (18) are also shown. The curves coincide with the numerical results to a satisfactory level. 

The only point to note is that as a increases, converges occurs at larger times. This is an 

expected behavior for a file with non-fixed particle's density. 

     In light of the simulations’ results, a final remark is made on the interpretation of the limit of 

long times. In this paper, we used this limit in deriving the statistics of the file. We gave along 

the paper, and in the appendices, several interpretations for this limit. Yet, we can use figure 1 

to further define the meaning of long times. Clearly, Fig. 1 shows that this limit depends on the 

value of   and  : when   and/or   are large, the coincidence of the simulations’ curves and the 

curves obtained from Eq. (18) happens at relatively larger times; plus, at smaller times, the 

difference among the curves is, in most cases, larger when   and   are larger. So, we use the 

simulations’ results for the MSD for defining the limit of long times: we say that long times 

corresponds to the time,   , it takes a particle to reach a distance    from its origin that has    

particles in it.    is then estimated with Eq. (18):                    
  . These relations give: 

      

 
            , where   is the scaling power in Eq. (18). We use       as a safe-bound 

for   , as the value of 35 (events) is considered a large number in statistics. From Fig. 1, it is 

clear that also for      the coincidence among the simulations’ results and the curves obtained 

from Eq. (18) is excellent. 

Concluding remarks. - This paper deals with normal stochastic dynamics of heterogeneous hard 

spheres in a very long strait. Each sphere has a random diffusion coefficient drawn from a PDF, 
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W(D)~D-γ, 0≤γ<1, for small D. The initial positions are also distributed such that the initial 

particles’ density law obeys,          
  ,      . We first derive the approximation for 

the particles’ PDF for heterogeneous files:           
 

  
  

  

   
             

 
 

    
 . From this 

PDF, we derive here the MSD for a tagged particle in heterogeneous files:    
     

   

    , 

         , and the corresponding tagged particle’s PDF:            
 

  
 

   
 

    
  . The same 

results for the tagged particle’s MSD were obtained using additional two approaches: scaling 

law analysis and numerical calculations. We also obtained results for deterministic files with a 

constant particles’ density and distribution in velocities of the form of Eq. (5); here, using scaling 

law analysis, we found that the MAD obeys:         
   

   . All the above results are useful for files 

in which the particles are not identical, and differ in, for example, mass, size, or composition. 

     Still, there is an interesting generalization of the above: anomalous files. In an anomalous file, 

the underlying dynamics are such that the waiting time PDF for individual jumps decays like a 

power-law. (A waiting time PDF in a normal diffusive file decay exponentially.) Such a file may 

exhibit a rich spectrum of behaviors. In fact, we find in preliminary calculations that nature of 

the anomaly of the file determines its statistical behavior. For example, renewal-anomalous 

files, in which all the particles attempt a jump at the same time, are different than non-renewal 

anomalous files, where each particle has its own clock of waiting times. Also, files in which the 

particles diffusion coefficients are distributed and have anomalous underlying dynamics may 

lead to interesting phenomena; this statement relied on a corresponding system with one 

particle: when a free stochastic particle performs anomalous dynamics and its diffusion 
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coefficient is drawn every jump from a distribution, a transition in the rule for the power that 

governs the effective waiting-time PDF of the dynamics is seen [40]. An analysis of anomalous 

files is still to come. 
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FIGURE CAPTIONS 

Fig 1 The MSD on a log-log scale from twelve simulations. Each simulation has a specific value 

for a and γ, where: γ=0, 1/3, 1/2, 2/3, and a=0, 1/3, 2/3. Each panel has a constant value of γ 

(the smallest value of γ is in the top-right panel and γ increases in a z-like shape). Each curve (in 

a given panel) corresponds to a different value of a, where a lower curve always has a smaller 

value of a. The analytical curves from Eq.(18) are also shown, and coincide nicely with the 

results from the simulations. (The free parameter of any analytical curve is always chosen to 

coincide best with the curve of the simulation. Yet, any analytical slope is a pure theoretical 

result.) Note that the x axis in the figure was obtained when monitoring the value of tj at, 10j*A 

time units (A is a number), and then taking the log of the time vector. The Y axis is the log of the 

monitored MSD. 
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APPENDIX A 

This appendix summarizes the results of our previous paper in this subject, Ref. [1], where we 

derived the PDF           for a tagged particle in a file of particles all having the same diffusion 

coefficient. Very similar calculations are used in this paper for deriving PDFs in heterogeneous 

files. 

     The diffusion equation for the particles’ PDF           reads: 

                   
          

    ,         (A1) 

with the initial condition, 

                       
 

    
          ;          x0,j=sign(j)∆|j|1/(1-a).   (A2) 

Here,   is a microscopic length, and      . Actually, in the following calculations we set, 

   . The single file nature enters through the system’s boundary conditions,  

    
                

                  
   ;         ,   (A3) 



which simply means that the adjacent particles bounce back when collide. The joint N-particle 

multi-dimensional PDF can be obtained from the Bethe ansatz [2]. The Bethe ansatz is the {k}-

space, {k}=k-M,…,kM, integrand of the  Fourier transform of the solution (xk),  

            
 

  
                

 
          

 
 
    .        (A4) 

Here, the index p contains the permutations of the N particles’ indices, so the summation is 

over N! permutations (e.g. xj(p*)=xi, for a given p*, and,         ).  

The joint PDF in {x}-space reads, 

                   
 

    
             

 

     .             (A5) 

To show that            is normalized to one, we need to perform an N-dimensional 

integration over the {x}-space with the restriction, 

                        .             (A6) 

It is seen from the direct calculations for small N values that the restricted integration can be 

replaced with an unrestricted integration for each particle, i.e.,        , j=-M,…, M, 

when dividing the results with N!. In these limits of integration, each permutation in the 

expression for            is a product of N integrals, each of which is normalized to one. Thus, 

each permutation contributes a factor of 1/N!. As there are N! permutations,            is 

normalized to one.  



     To obtain the PDF for the tagged particle,          ,      and     , we need to integrate 

out all the file particles’ coordinates except of r, while obeying the restrictions of Eq. (A6). This 

is performed when separating the integrals into left integrals, and right integrals, 

                                
 

 

 

  

     

  

     

  
    
 

  
               

 

    
. 

This 2M-dimensional integration fulfills Eq. (A6). The particles always maintain their order. 

Similar to the calculations of the normalization constant, we can use r as the upper bounds in 

the left integrals, and also use r as the lower bounds in all the right integrals. Thus,           

obeys, 

          
 

 
      

 

  
    
 

 
           

   ,              (A7) 

where C is the normalization constant. Equation (A7) enables further analysis because it gives 

          as products of separate integrals, 

            
 

 

  
           

      
 

  
 

 
 

  
                

    
 

 
 

 
 

  
              

 
    .   (A8) 

Here, for notation convenience, we define,         . (   equals           for normal 

diffusion, and is the natural length scale in the system.) For any permutation   , the faith of 

each integral over   , with  j>0, is one of three possible outcomes (asymptotic analysis: large 

times and finite  ): 

(1) When (            , the integral is approximated with,    . 

(2) When (             , the integral is approximated with,  .   



(3) When (             , the integral is approximated with, 
 

   
 

     
, where,       

        . 

The same three possible outcomes are obtained for any integral over xj with  j<0, when 

switching the condition-part of cases (2) and (3). For each permutation, we count the number 

of integrals of each kind (cases (1)-(3) above), and then sum over all permutations’ results. 

Counting the important permutations that contribute for           in (A8) is the intriguing part 

in the calculations of this PDF. Yet, once we manage to identify and actually count these 

permutations, we can use the same line of calculations also for other file’s types, e.g., 

heterogeneous files. This is the reason that we spell out these calculations here.   

     We start the analysis of Eq. (A8) when analyzing           for small values of r. Here, small r 

values means,       . We define ordered-permutations,     , as permutations in which all the 

initial conditions for positive  ,              
 , have positive values, and so they are on the right 

of  , and all the initial conditions for negative  ,               
 , have negative values and so are 

on the left of  . The illustration of such a possible permutation is the following: 

 

 

Fig A1 An illustration of a configuration of the initial conditions in Eq. (A8), and the value of  

 . In this illustration,            . 

As the tagged particle is the middle particle, and r is small, such permutations exist. In fact, 

there are (M!)2 such permutations. There are M! internal permutations of the left initial 

 

1 2 3 4 5 6 7 8 9 10 11 12 -7 -6 -5 -4 -3 -2 -1 0 -8 -9 -10 -11 

  
                       



conditions and M! internal permutations of the right initial conditions, starting from the 

‘perfectly’ ordered permutation,     :            for every j. All such (M!)2  permutations 

of the ‘perfectly’ ordered permutation lead to the same result of the integrals in Eq. (A8), as the 

integrals are separate of each other. For small r, only cases (1) and (2) are relevant for the 

ordered permutations. Each ordered permutation gives a constant independent of r, which 

equals to,  
 

 
 

   

. So, we find that for the ordered-permutations, Eq. (A8) is reduced to: 

 
 

 
 

   
  

 
 

  
           

  
 

 
 

   

  
 

 

  
         

       
 

 
 

   

.  

That is, the contribution of ordered permutations to (A8) is a constant independent of r.  

     Thus, for (M!)2 ordered permutations from the possible (2M)! permutations in Eq. (A8), the 

small r limit contributes a constant. There are still 4M(M!)2 permutations in which the initial 

conditions are not ordered. To calculate these permutations, we perform the following 

calculations: we start with the perfectly ordered permutation, and choose m initial coordinates 

from the left-M-initial coordinates, and choose m initial coordinates from the right-M-ordered 

initial coordinates, and switch the sets. For each switch, there are the ‘standard’ (M!)2 internal 

permutations all lead to the same result (that we still need to calculate for each switching 

protocol). We distinguish between two choice types: 

 The chosen initial-coordinate is within the distance    from  :                  

 The chosen initial-coordinate is at a distance larger than    from  :                 

Using these options, we find that there are 4 possibilities for each switch with the following 

results:  



 The contribution from switching an initial coordinate within the distance of    from r 

with an initial coordinate within the distance of    from r from the other side, that is, 

                  ;                and                ,  

gives approximately the result of the ordered permutations discussed above, that is, a 

constant independent of  .  

 The contribution from permutations in which both initial coordinates that are switched 

are more distant than    from   (in opposite direction), that is, 

                 ;                     and                , 

is small relative to the contributions from the switching protocols in (A9) discussed in 

what follows.  

 The important case is when an initial coordinate within the distance of    from   is 

switched with an initial coordinate from the other side (right-left switch or left-right 

switch) that its distance to   is larger than   : 

                 ;                and                ,               (A9.1) 

or, 

                 ;                and                .                 (A9.2) 

In what follows we calculate the contributions from these permutations. 

   

Using the results of case (3) above, we find that for switching protocols (A9.1)-(A9.2), the 

contribution to Eq. (A8) is proportional to the following expression: 



                     
       

   
 

 
        

 

       

 
   

     

   
 

 
         

 

        

 
   .                            (A10.1)   

In the upper bounds of the summations in Eq. (A10.1),       is the number of particles in   . In 

a file with a constant density,    , and so, 

          .  

In Eq. (A10.1),    is the combinatorial factor, 

    
     

 
  

   
 

 , 

which gives the number of  ways to perform the switching protocol for   coordinates. Equation 

(A10.1) has two combinatorial factors:    is associated with the switching protocol of Eq. (A9.1) 

and    is associated with the switching protocol of Eq. (A9.2). Each combinatorial factor is 

associated with a product of Gaussians resulting from calculating the integrals of case (3):    is 

associated with the product,  
 

        
 

       

 
   , and    is associated with the product 

 
 

         
 

        

 
   . Note that, in principle, the arguments of the Gaussians depend on the 

summation index,               , and                 . Yet, the actual form of      , in 

the context of Eq. (A10.1), should obey,  

            

  
, 

where    is a very large number. The reason is that          in,        
          

  
, should reflect 

all the   coordinates from the left (right) of   for          [        ], and for this we must use 



an average quantity, say,    (   ), and this quantity is positive (negative) and large when   is 

large. We will use this point in the final step of deriving          .  

     Now, we look on Eq. (A10.1) and note that we can replace    and    with their maximal 

value, and write the upper bound for Eq. (A10.1) as: 

           

 
          

  
                 

  ,                          (A10.2)   

where    goes over all the permutations in Eq. (A10.1) (about    permutations). Equation (10) in 

the main text uses Eq. (A10.2) without the logarithmic correction in the exponentials. Equations 

(A10.1)-(A10.2) are the major results of this appendix. 

     We further analyze Eqs. (A10) in the limit of many particles, where   is much larger than   . 

Then, the symmetric term,     
  

 
        , dominates the sum in Eq. (A10.1). So we 

find, 

                     
 
 

 
        

 
         

 

               

     
    

           
 
          

    
              .     (A11) 

In Eq. (A11), we used,               

  
, relying on the fact that all initial coordinates     are 

at a distance of, at least,    from  , yet the average of all of these is much larger, and 

proportional to   . Thus, the leading term for the PDF of the tagged particle reads, 

           
 

  

    ,                          (A12)  



with a logarithmic correction in the exponent. For large values of r,       , there are always 

    initial coordinate to the left of   (say    ). This gives rise to a correction term, 

  
             

   , which is multiplied by the result of any permutation. The switching analysis, 

however, is the same as discussed above. Thus, the tagged particle’s PDF for        reads, 

           
 

  

    
 

             

   .          (A13) 

The correction term is important only when        , but the PDF at such distances is of the 

order of o(10-6).  

 

APPENDIX B 

In this appendix, we show that the PDF,  

          
 

  
  

  
             

    

 
    

   ;               
 
    ,  (B1)   

approximates the PDF for an heterogeneous file in the limit of long times. We also define this 

limit mathematically.  

     The actual PDF for the heterogeneous file obeys the diffusion equation (in what follows we 

use just           although formally it is the approximation for the actual PDF): 

                  
   

         
 

    
.                                   (B2)         

          is subjected to the boundary conditions:     



      
                 

           
                 

     ;                 ,          (B3) 

and the initial condition: 

                       
 

    
          ;                 

   
   

 
   .        (B4) 

Also, the coordinates in           obey the order: 

                        .                      (B5) 

     We first show that Eq. (B1) reduces to Eq. (B4) in the limit,    . In this limit we find: 

                             
     ,      (B6) 

as any normalized Gaussian reduces to a Delta function in the limit    : 

 
 

      
 

 
             

     

   

             . 

     Yet, as the solution must always obey Eq. (B5), only the ordered permutation survives, say, 

permutation    , obeying: 

                                .    

Namely, we have: 

                            
    , 

as required. 



     Next, we show that the PDF fulfills the equation of motion. First, we take the derivative with 

respect to the time: 

     
 

  
  

  
             

    

 
    

    
 

  
 
 

  
  

             

    

 
    

       

     
 

  
  

  
             

    

 
    

  
 

 
 

             

    

 
     .    (B7) 

Using, 

 
 

  
 
 

  
   

 

 

   
 
    

 

          
   

 
 

 

  
 , 

we have: 

  
 

  
  

  
             

    

 
    

  
 

 
  

             

    
 

 

 
  

     .      (B8) 

Here, we used the relation,       . Now, applying the operator in the right hand side of 

Eq. (B2) on Eq. (B1); namely:  
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we find, 

   
 

  
      

 

    
   

          

    
 

  
            

 

    

 
    

 
 



   
 

  
        

          

    
 

 

 
 

    
  

  
            

 

    

 
    

 
 
    . 

This equation is rewritten as,  

   
 

  
  

  
            

 

    

 
      

            
 

    
 

 

  
  

     .    (B9) 

Cleary, Eq. (B9) is the same as Eq. (B8). 

   Now, for the boundary conditions. Applying on the PDF the left hand side of the boundary 

condition in Eq. (B3), we find: 

        
  

  
             

    

 
    

 
 

         

  

  

 
             

  
            

    
 

              

      
  

             

    

 
      

         .       (B10) 

Here, the sum in the exponential is over all the coordinates excluding    and     . Applying on 

the PDF the right hand side of the boundary condition, one obtains: 

            
  

  
             

    

 
    

 
 

         

  

  

 
               

  
            

    
 

              

      
  

             

    

 
      

         .   (B11) 

   Now, we look on permutations    and   : these are the same excluding the values for      

and       . For permutation   , we set: 



               
             

     , 

and for permutation   , we set: 

                
             

     . 

The set      contains permutations of all the initial coordinates excluding those of      and 

      . Now, in what follows we divide the summation over          permutations to triple 

summation: 

                           ,        (B12.1) 

and we use the equality, 

                                       .     (B12.2) 

(Cleary, the above couple of equations hold also for      .) We are going to show that the 

following relation holds in the limit    : 

                           .                      (B13) 

Proving (B13) is enough for proving that (B1) approximates the boundary conditions (B3), as 

with the aid Eqs. (B12), Eqs. (B12)-(B13) are the full boundary condition.  

     Starting from Eq. (B13), we have for the left hand side: 

             

 
       

  
      

    
 

      

      
 
       

  
      

    
 

      

      
 
,     (B14.1) 

where the right hand side of (B13) reads:  



             

 
       

  
      

    
 

      

      
 
       

  
      

    
 

      

      
 
.   (B14.2) 

The factor   that appears in Eqs. (B14) reads: 

  
  

 
  

  
              

    

 
     

  . 

Now, the exponential factor  
  

      

    
 

      

      
 
 goes to unity as    , as so Eq. (B14.1) reduces 

to: 

              

 
 
   

           
      

    
 

      

      
   

             
      

    
 

      

      
  ,    (B15.1) 

and similarly, Eq. (B14.2) reduces to: 

     
         

 
 
   

           
      

    
 

      

      
   

             
      

    
 

      

      
  ,    (B15.2) 

     Clearly, Eq. (B15.1) equals to Eq. (B15.2) to a leading order in   
 

 
 . So, to a leading order in 

  
 

 
 , Eqs. (B15) prove Eq. (B13), and thus proves Eq. (3). 

 

 



APPENDIX C 

This appendix presents the way to relate the PDF for a heterogeneous file, 

          
 

  
  

  
             

    

 
    

 ,         (C1) 

with a PDF of a tagged particle in the file,  

          
 

  
  

  
              

    

 
    

  .       (C2) 

In Eq. (C2),    goes over the relevant permutations (about    permutations); see the discussion 

in appendix A, around Eqs. (A10), for further details on the permutations in   .  

     We also discuss in this appendix the technical details that further approximated           

as, 

 

  
  

  
              

    

 
    

   
 

  
 

   
 

  
     

 
   .         (C3) 

In Eqs. (C1)-(C3), 
 

  
 is always a normalization constant, and in Eq. (C3)         (where, 

        is the tagged particle coordinate relative to its initial position) and    

    are 

dimensional distance and dimensional time, respectively. Also, we recall that   (     ) is a 

microscopic length scale and   is the fastest diffusion coefficient in the file. The relation 

connecting Eqs. (C1) and (C3), written in a symbolic way as, 

 

  
  

  
             

    

 
    

    
 

  
  

  
              

    

 
    

  ,      (C4) 



is the same as the relation connecting the corresponding quantities in a file with the same 

diffusion coefficient; see Appendix A, Eq. (A5) and Eq. (A10.2). In fact, we can carry on precisely 

the same analysis that was used to obtain Eq. (A10.1) from Eq. (A5), here, for the 

heterogeneous file, for deriving Eq. (C6). The fact that     appears in the denominator of the 

exponential does not change the counting of the particles in the length     , and this is the 

reason that the same analysis holds for both systems.  

     Now, let us explain the upper bound for,   
  

              

    

 
    

  , in Eq. (C3): 

   
  

              

    

 
    

    
   

 

  
     

 
   .      (C5) 

We notice that           is always at a distance from    that is not smaller than      . In fact, 

we should set, 

             ,          (C6) 

where    is a large quantity. The reason is simple:          should reflect all the   coordinates 

from the left (right) of   for          [        ], and for this we must use an average quantity, 

say,    (   ), and this quantity is positive (negative) and large (in absolute value) when   is 

large. See also the discussion in appendix A above Eq. (A10.2). 

     Using Eq. (C6) in the exponentials’ arguments in Eq. (C5) gives, 

              
    

           ,        (C7) 

and so, 



 

  
  

  
              

    

 
    

   
 

  
 

  
  

     

    

 
   

.       (C8) 

Renormalizing Eq. (C8) with respect to    gives Eq. (C3).  

 

APPENDIX D 

Given the PDF, 

                      ;       ,   (D1) 

defined in the interval,      , we draw   random numbers from this PDF. What is the 

shape of the curve when we plot these random numbers when ordering them from the largest 

value to the smallest? Answering this question gives    that appears just above Eq. (15) in the 

main text: 

                      .         (D2) 

This expression’s accuracy increases with the value of  .  

     To prove Eq. (D2), we first write the expression for drawing a random diffusion coefficient 

from      using the unit density, 

        ;      .  

We use the relation, 

              , 

and find, 



     
       .           (D3) 

In Eq. (D3),    is a random number drawn from the unit PDF,      . When there are   random 

numbers,     is a vector of length  . To proceed, we need to find the functional form of element 

  in this vector after ordering it from the largest value to the smallest. We call this vector,      

with ordered elements,    . It is clear that the largest value of     is one; the smallest value is     

(this is shown in what follows). As the density       is fixed,      must have the form, 

         

 
    

 
        

 
.       (D4) 

Equation (D4) proves Eq. (D2).  

    To show that the smallest value in      is    , we calculate the PDF of the smallest number out 

of possible     random numbers drawn independently from      : 

  
                       

 

 
 

 

          .      (D5) 

Similar to the analysis of extreme value statistics in the main text, we find the typical value of 

the smallest number drawn from   
        ,      , when first demanding that      is not 

smaller than    ; namely: 

     .  

Using this upper bound in the re-normalized PDF in Eq. (D5) gives: 

  
          .         (D6) 

Finally, the typical smallest value of the vector    ,      , is the inverse of   
         in Eq. (D6), 

so, 



         .  

It is very simple to see that this analysis is very accurate even for 501 particles (the number 

used in our simulations) in a simulations.  Results from several simulations (for three different 

values of game) are shown in Fig. D1. Coincidence of the simulations with Eq. (D2) is evident. 

 

Fig D1 Results from simulations drawing 501 diffusion coefficients from Eq. (D1), and ordering 

them from the largest to the smallest; curves are obtained for 3 different values of  , 

  
 

 
 
 

 
 
     

 
 . The curve with the smaller value of    is to the right of those with lager values of 

 . Here,    . This figure also shows the curves from Eq. (D2) for each value of  . Coincidence 

among the curves from the simulations and the estimated curves is evident. 
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