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Normal dynamics in a quasi-one-dimensional channel of length L �→�� of N hard spheres are analyzed. The
spheres are heterogeneous: each has a diffusion coefficient D that is drawn from a probability density function
�PDF�, W�D−� for small D, where 0���1. The initial spheres’ density � is nonuniform and scales with the
distance �from the origin� l as �� l−�, 0���1. An approximation for the N-particle PDF for this problem is
derived. From this solution, scaling law analysis and numerical simulations, we show here that the mean square
displacement for a particle in such a system obeys �r2�� t�1−��/�2c−��, where c=1 / �1+��. The PDF of the
tagged particle is Gaussian in position. Generalizations of these results are considered.
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I. INTRODUCTION

Diffusion is among the fundamental processes in
condensed-matter physics, chemistry, and biology, as it af-
fects the behavior of many complex processes in these fields
�e.g., �1–4��. An important process in the study of diffusion
is file dynamics �also known as single file dynamics�
�4–37,40�. Put simply, it is a process of N identical particles
�hard spheres� that perform normal stochastic diffusion, with
the same diffusion coefficient D, in a cylinder or a strait, of
length L �L→��. The mean particles’ density, �, is fixed: �
=�0=N /L. �This means that the mean microscopic distance
between adjacent hard spheres is fixed and follows �=L /N,
where � cannot be smaller than the particle’s diameter.� The
dynamics of hard spheres in a strait is a very realistic model
for many microscopic processes �1,30–37�: for example, �a�
diffusion within biological and synthetic pores and in porous
materials of water, ions, proteins, and organic molecules
�1,30�; �b� diffusion along one-dimensional objects, such as
the motion of motor proteins along filaments �1�; �c� conduc-
tance of electrons in nanowires �37�; and �d� single file dy-
namics has also been related to monomer dynamics in a
polymer: both systems share a similar scaling law for the
mean square displacement �MSD� of a tagged monomer
�29,34�.

The most well-know property of file dynamics is the scal-
ing of the MSD �r2� of a tagged particle in the file: �r2�
��Dt�1/2 /�0. This result is unique. It is much slower than the
MSD of a free mesoscopic particle diffusing in solution, for
which �r2� free�Dt. Clearly, a tagged particle in a file is much
slower than a free particle as it can only move when other
particles move in the same direction. Still, the special scaling
of �r2� with time reflects a unique mechanism of motion. In
Ref. �23�, we have derived a general relation connecting the
mean absolute displacement �MAD� of a free particle and of
a tagged particle in a file �that have the same underlying
dynamics� that captures some of this uniqueness,

�	r	� � �	r	� free/n . �1�

Here, n is the number of particles in the covered length �	r	�.
Equation �1� holds when the file has a fixed density on av-
erage ��	r	��n /�0�, and this leads to

�	r	� � �0
−1/2�	r	� free

1/2 . �2�

Equations �1� and �2� show that when diffusing a distance r,
the tagged particle slows down relative to a free particle as it
can only move when coordination with the file particles is
achieved, and this coordination is proportional to 1 over the
number of particles in the distance r. The relation in Eq. �2�
leads to the famous MSD in a Brownian file, that is, �r2�
��Dt�1/2 /�0.

Yet, there are many other known statistical properties of
file dynamics �4–27�. �a� The probability density function
�PDF� of the tagged particle is asymptotically a Gaussian in
position �5�. �b� The motion of the particles is correlative;
namely, a cloudlike motion is seen in the system �9,18�. This
cloud of particles is not of a constant density; namely, fluc-
tuations in the particles’ density are observed �9,18�. �c� The
microscopic single event PDFs in time and space have finite
moments �17�. �d� In dimensions larger than 1, a tagged hard
sphere in the presence of hard spheres diffuses normally �9�;
namely, in such a system the MSD of a tagged particle is
linear with time. �e� For a deterministic basic single file with
momentum exchange upon collisions, the tagged particle’s
PDF is also a Gaussian, yet with a variance that scales as the
time �6� �note that Eq. �2� still holds�. �f� We note that in this
paper, the statistics of the particles at the edges of the file are
not considered as special particles. Indeed, in a file with a
finite number of particles, yet of infinite length �namely, l
→��, the particles at the edge of the file can diffuse freely to
the side not bounded by particles. For an analysis that fo-
cuses on this point, see Ref. �25�. Here, we focus on files
with N→�, where the tagged particle represents the particles
in the middle of the file.

Still, in realistic systems, one or several of the conditions
defining the basic file may break down, and this may lead to
different dynamical behaviors. For example, in a real chan-
nel, the particles may bypass each other with a constant
probability upon collisions �19–22�, and this leads to an en-
hanced diffusion. Yet, when the particles interact with the
channel, a slower diffusion is seen �15�. An important gen-
eralization in file dynamics takes the initial particles’ density
law to scale with the distance l �23�,

��l� = �0�l/��−�, 0 � � � 1. �3�

��l� in Eq. �3� is the initial density of the file: the particles
are initially positioned at x0,j =sgn�j��	j	1/�1−�� for 	j	
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�M , N=2M +1. So, the initial number of particles n as a
function of the length l obeys n= �l /��1−�. Among the pos-
sible realistic choices for a particle distance law �e.g., an
exponential, a Gaussian, or a power law� the one that affects
the dynamics is a power law. This is shown when calculating
the MAD for a system obeying Eq. �3� �23�,

�	r	� � �0
��−1�/2�	r	� free

�1+��/2. �4�

When �→0, we recover the standard result �	r	�
��0

−1/2�	r	� free
1/2 . This equation means that only a power-law

density law can influence the dynamics; namely, when the
distance between particles along the file does not increase
fast enough, as in a power-law density law, the scaling of the
MAD is not affected by the fluctuations in the distance
among particles.

Now, �	r	� in Eq. �4� holds for any renewal N-body under-
lying dynamics and for the density in Eq. �3�. Here, a re-
newal file is a file in which all the particles attempt jumping
at the same time. We use the term of renewal process in
accordance of this term in probability theory �39�.

Equation �4� generalizes Eq. �2�. Still, this generalization
is limited to the other conditions of a basic file. In this paper,
we deal with heterogeneous files. In a heterogeneous file, the
particles’ diffusion coefficients are distributed according to a
PDF; here, we use

W�D� =
1 − �

	

D

	
�−�

, 0 � � � 1, �5�

where 	 is the fastest possible diffusion coefficient in the
file. The initial conditions are distributed according to Eq.
�3�. In a series of analytical and numerical calculations, we
show here that the MSD for the tagged particle in such a file
follows:

�0
2�r2� � ��0

2	t��1−��/�2c−��, c = 1/�1 + �� . �6�

The corresponding PDF is a Gaussian. Generalizations and
implications of these results are considered.

II. CALCULATING THE FILE’S PDFS

In this paragraph we calculate the PDF of the tagged par-
ticle in a heterogeneous file from the joint PDF for all
the particles in the file, P�x , t 	x0�. Here, x
= �x−M ,x−M+1 , . . . ,xM is the set of particles’ positions at
time, t, and x0 is the set of the particles’ initial positions at
the initial time, t0, which is set to zero. The tagged particle is
taken as the middle particle in the file. The following calcu-
lations for P�x , t 	x0� are based on our analysis of simple files
�23�, and so we concisely present these calculations first; the
curious reader can also find an elaborated discussion of our
previous calculations in Appendix A of the supplementary
material in this paper �42�.

Simple files. In a simple file, P�x , t 	x0� obeys a simple
normal diffusion equation,

�tP�x,t	x0� = D �
j=−M

M

�xj
�xj

P�x,t	x0� . �7�

Equation �7� is solved with the appropriate boundary condi-
tions, which reflect the hard-sphere nature of the system:

�D�xj
P�x,t	x0��xj=xj+1

= �D�xj+1
P�x,t	x0��xj+1=xj

for

j = − M, . . . ,M − 1

and with the appropriate initial condition

P�x,t → 0	x0� = �
j=−M

M


�xj − x0,j� . �8�

The PDFs’ coordinates must obey the order x−M �x−M+1
� ¯ �xM. The solution of Eq. �7� is a sum of products of
Gaussians �23–27�,

P�x,t	x0� =
1

cN
�

p

exp
 − 1

4Dt
�

j=−M

M

�xj − x0,j�p��2� . �9�

In Eq. �9�, the external sum is over N! permutations of the
initial conditions. The factor that takes care for the normal-
ization is cN; cN is always the normalization constant every-
where it appears in this paper. Equation �9� is understood
under the condition that the coordinates are ordered. Equa-
tion �9� is a direct result of the Bethe ansatz for linearly
coupled particles �38�.

Equation �9� is the starting point for finding the PDF of a
tagged particle in this file, P�r , t 	r0�. In Ref. �23�, we have
estimated this PDF as

P�r,t	r0� �
1

cN
�

p̃

exp
 − 1

4Dt
�
j=−n

n

�rd − x0,j�p̃��2�
�

1

cN
exp
− rd

2

2Dt
�
j=1

n

1� . �10�

In Eq. �10�, rd=r−r0. Equation �10� is a result of lengthy
calculations and assumes the limit of long times. The full
details of the calculations that relate Eqs. �9� and �10� were
presented in Ref. �23�; yet, these are presented in Appendix
A of the supplementary material in this paper �42�. In what
follows, we highlight the important steps of these calcula-
tions. We start with Eq. �9� and first integrate the file coor-
dinates excluding the tagged particle’s coordinate. Then, we
count the important permutations that contribute to the sum
of permutations after the integration; then, these form the
values of p̃. Once we know the set �p̃, we can further esti-
mate P�r , t 	r0� with the inequality. The inequality simplifies
the expression for P�r , t 	r0� as the last term in Eq. �10� is a
summation over a constant; namely, the sum counts particles,
and so its solution is n: the number of particles in the length
r̃. r̃ is found from the equation

r̃�n�
�4Dt

= 1.

This relation for r̃ is a result of our approximation that
each exponential factor is a kind of a step function where the
step function is nonzero for a width equal to the variance of
the exponential argument. As in a constant density file the
distance is proportional to the number of particles in it, n
� r̃ /�; we have n��Dt /� and, thus,
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P�r,t	r0� �
1

cN
e�−rd

2/2Dt�n =
1

cN
e−Rd

2/�2�,

where Rd=rd /� and �=�−2Dt are the dimensionless distance
and time, respectively.

Heterogeneous files. Once the relation connecting Eqs. �9�
and �10� is established, we can use a corresponding relation
for deriving the PDF of the tagged particle in a heteroge-
neous file. Clearly, we need first to solve the equation of
motion for the N-particle PDF for this file,

�tP�x,t	x0� = �
j=−M

M

Dj�xj
�xj

P�x,t	x0� , �11�

subjected to the boundary conditions

�Dj�xj
P�x,t	x0��xj=xj+1

= �Dj+1�xj+1
P�x,t	x0��xj+1=xj

,

j = − M, . . . ,M − 1 �12�

and with the initial condition �Eq. �8��. We approximate the
solution of Eqs. �11� and �12� with

P�x,t	x0� �
1

cN
�

p

exp
− �
j=−M

M
�xj − x0,j�p��2

4tDj
� . �13�

Equation �13� is our first main result in this paper. This equa-
tion was written in analogy with Eq. �10�. To test the quality
of the approximation, we plug it in the diffusion equation for
a heterogeneous file �Eq. �11��. We find that Eq. �13� indeed
fulfills Eq. �11�. Equation �13� also fulfills the initial condi-
tion �Eq. �8��. Yet, Eq. �13� only approximates the boundary
conditions �Eq. �12��. Nevertheless, a simple analysis shows
that the approximation in Eq. �13� becomes more and more
accurate for large times. �A full analysis of Eq. �13� is pre-
sented in Appendix B of the supplementary material in this
paper �42�.�

Using Eq. �13�, we approximate the PDF of the tagged
particle in the heterogeneous file with

P�r,t	r0� �
1

cN
�

p̃

exp
− �
j=−n

M
�rd − x0,j�p̃��2

4tDj
�

�
1

cN
exp
− Rd

2

4�
�
j=1

n

1/Dj� . �14�

Here, �=�−2	t. Equation �14� is based on the same approach
that relates Eq. �9� to Eq. �10�. �Additional technical com-
ments on this relation are presented in Appendix C of the
supplementary material in this paper �42�.� Yet for proceed-
ing, we need to calculate the sum in last factor in Eq. �14�.
These calculations are more complicated than those per-
formed for the simple file. First, for a heterogeneous file that
its diffusion coefficients are drawn from Eq. �5�, any group
of n particles �taken from the N particles in the file� must
have the following values for their diffusion coefficients:

Dj � 	�1 − �j − 1�/n�1/1−�, 1 � j � n ,

where the values of the diffusion coefficients are ordered
from the largest to the smallest. This relation’s accuracy in-

creases as n→�. �For its derivation, see Appendix D of the
supplementary material in this paper �42�.� Second, we need
to find n�t�. This is found from the equation

r̃�n�2

D̃n

= t . �15�

Equation �15� represents the arguments in all the exponen-
tials in Eq. �14�. r̃�n� is simply found from the density law in

the system, n��r̃ /��1−�. The diffusion coefficient D̃n ap-
pearing in Eq. �15� must represent a bunch of slow particles
in the interval that has in it n particles, as these particles

affect the result the most. Yet, D̃n is a typical slow-diffusion

coefficient and not necessarily the slowest. We estimate D̃n

with D̃n=	n−�/�1−��. The derivation of this relation is spelled
out in the next paragraph �Sec. III�. Here, we note that as �

tends to 1, D̃n reaches the value of the slowest diffusion
coefficient from a group of n particles. Yet, for a relative fast

system D̃n approaches a constant independent of n. A similar
trend is seen in the behavior of the average diffusion coeffi-
cient, which vanishes as � goes to 1 and has a nonzero value
as � tends to 0. Now, using the above expressions for r̃�n�
and D̃n in Eq. �15�, we find

n � ��1−���1−��/�2−���1+��. �16�

Substituting Eq. �16� in Eq. �14� yields the PDF for the
tagged particle in a heterogeneous file,

P�r,t	r0� �
1

cN
exp�− Rd

2

4�
�
j=1

n 
1 −
j − 1

n
�−1/�1−���

=
1

cN
exp
− Rd

2

4�
n1/�1−���

=
1

cN
exp
− Rd

2

4�
��1−��/�2−��1+���� . �17�

A Gaussian PDF is specified through its variance and so,

�Rd
2� = 2��1−��/�2c−��, c = 1/�1 + �� . �18�

Equations �17� and �18�, together with Eq. �13�, are the ma-
jor results in this paper. Note that Eq. �18� is obtained from
Eq. �17�, and so it is the upper bound of the MSD of this file.
Yet, we show in what follows, in scaling law analysis and in
simulations, that this is, in fact, the asymptotic limit of the
actual MSD.

Examining Eq. �18�, we note the following. In the limit of
�→0, �Rd

2����1+��/2. This result is equivalent to Eq. �4� for
a Brownian file. This result means that when there are not
enough slow particles in the file, the MSD scales in the same
way as of a simple file. Thus, this result gives the criteria
when W�D� affects the diffusion process significantly. In the
limit of a constant density, �=0, we have �Rd

2����1−��/�2−��.
Here, when �→1, �Rd

2��1, namely, in this limit the system
is frozen. Equation �18� also predicts a cancellation of op-
posing effects: slow diffusion due to many slow particles and
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fast diffusion due to a low particles’ density can cancel each
other; when �=� / �2−��, a simple file scaling is seen �Rd

2�
��1/2, yet the actual file is heterogeneous.

Finally, we note here that a very different result for the
MSD than Eq. �18� is obtained in a heterogeneous file obey-
ing Eq. �5� when all the particles start at the origin �see Ref.
�25� for a discussion�.

III. SCALING LAW ANALYSIS

In this paragraph, we derive a scaling law for �	r	� in a
heterogeneous file with a constant density. The results of this
paragraph support Eq. �18� and further illuminate heteroge-
neous files. We start with the following set of relations:

�	r	� = �	r	� free/n = �1/2�	r	� free
1/2 � �1/2�D��	r	� free�t�1/4.

�19�

Equation �19� is similar to Eq. �1�: n is the number of par-
ticles in the cover length, yet �	r	� free reflects a free particle
dynamics with a modified diffusion coefficient, �	r	� free
��D��	r	� free�t�1/2. D��	r	� free� should reflect the fact that in
an interval of length �	r	� free there is a typical diffusion coef-
ficient that represents all the particles in this length, as we
substitute one for many. Clearly, D��	r	� free� is among the
slowest ones in the interval �	r	� free. Still, it should represent
a bunch of slow particles and not merely the slowest one. For
estimating D��	r	� free�, we first derive the PDF of the smallest
diffusion constant, Dmin, among n particles, denoted with
f�Dmin ,n�. The diffusion coefficients of the particles are
drawn independently of each other, and so this PDF obeys

f�Dmin,n + 1� = W�Dmin�
�
Dmin

	

W�D�dD�n

. �20�

The factor W�Dmin� represents the PDF that the slowest dif-
fusion coefficient has a value of Dmin and the integral to the
power of n is the probability that all the other particles have
diffusion coefficients that are larger than Dmin. A normaliza-
tion constant does not affect the following calculations, and
it is omitted. Using Eq. �5� in Eq. �20�, we find �for n�1�

f�Dmin,n + 1� � �Dmin/	�−�e−n�Dmin/	�1−�
. �21�

Equation �21� has the typical form of a PDF in extreme value
statistics �38�. We use this PDF to link a typical small diffu-
sion coefficient to n. For this, we look on the exponential
factor in the PDF, e−n�Dmin / 	�1−�

, and notice that only when

the condition n�D̃min /	�1−�=1 is met, a large probability can

be assigned for small values of Dmin. Solving for D̃min, we

find D̃min=	n−1�1−��. Using D̃min in Eq. �21� leads to

f�D̃min,n� � 	−1n�/�1−��. �22�

We define the typical value for the slowest particles in the

interval of n particles �n�1�, denoted as D̃n, as one over the

PDF f�D̃min ,n�,

D̃n � 1/f�D̃min,n� � 	n−�/�1−��. �23�

Equation �23� was used in the previous paragraph to derive
Eq. �17�. Substituting Eq. �23� into Eq. �19�, with

D��	r	� free�→ D̃n and n in Eq. �16�, leads to

�	Rd	� = ��1−��/2�2−��. �24�

Equation �24� is the same as Eq. �18� for �=0, with �Rd
2�

��	Rd	�2. Namely, Eq. �24� supports the results obtained in
the previous paragraph. Indeed, both calculations rely on the

same form for D̃n, yet these calculations have different start-
ing points. Note that the scaling law considered here holds
for �=0. In a file with a nonuniform particles’ density, the
file’s density does not scale with the distance in the sense
that a given interval of length l taken from the file at differ-
ent locations along the file has a different density of par-
ticles. Thus, any scaling law for a nonfixed density file must
rely significantly on known results. Starting from Eq. �19�,
we do not need to rely on known results. Yet, the reader can
find in Ref. �23� a scaling law analysis that uses also known
results in deriving scaling laws for nonuniform files.

Scaling law analysis enables to generalize the results for
files with different kinds of dynamics. We consider in what
follows heterogeneous-deterministic files. A deterministic
file is a file in which the particles are Newtonian and each
particle is assigned an initial velocity v with equal prob-
ability. In a simple deterministic file, the PDF of a tagged
particle is a Gaussian with a variance that scales linearly with
time. What is �	Rd	� when the value 	v	 is drawn from a PDF
of the form of Eq. �5� with equal probability for any direc-
tion? Starting from Eq. �19�, we find

�	Rd	� = ��−1	ṽ	t��1−��/�2−��, �25�

where 	ṽ	 is a characteristic velocity in the system. Equation
�25� is calculated in a similar way to the analysis of this
paragraph. Equation �25� shows that as �→1 the determin-
istic file freezes and as �→0 the file behaves as a simple
deterministic file.

IV. NUMERICAL SIMULATIONS

We perform off-lattice simulations of Eq. �11� with hard-
core interactions between point particles. The fact that the
particles are pointlike reflects the equation of motion, yet,
does not change the long-time statistics of the file compared
to simulations of files on lattices. �In fact, simulations are
always latticelike as the smallest length scale is limited by
the precision of the machine.� In the simulations, each par-
ticle is assigned a diffusion coefficient from the PDF in Eq.
�5� �	=1 in the simulation�. The jth particle is positioned at
x0,j =sgn�j�	j	1/�1−��� ��=1.3 in the simulation�. We set N
=501 particles. In each time step �dt=0.13 in the simula-
tions�, each particle is moved relative to its position accord-
ing to the equation dxj =2�q−1 /2��2Djt, where q is a ran-
dom number from the unit PDF and is chosen for each
particle at each time step. The particles’ locations are ordered
after each time step. The interval’s length is bound: edge
particles cannot move further than their initial conditions

OPHIR FLOMENBOM PHYSICAL REVIEW E 82, 031126 �2010�

031126-4



plus a room for several full jumps in the direction that ex-
tends the initial interval length. The above iteration scheme
is executed over and over and over again �three million time
steps are used in each simulation�. Note that in the above
simulations’ rules, the boundary conditions are always ful-
filled. Also, note that the above simulations’ rules were also
used for simple files, e.g., files with the same diffusion coef-
ficient. Yet, these rules hold also for the heterogeneous file.
Here, the reflection principle �that is, the ordering of the
particles after each cycle of jumps� represents �a� elastic col-
lisions among particles that can clearly also represent par-
ticles with distribution of diffusion coefficients and �b�
Brownian dynamics, so the particles momenta decay after
each jump relatively fast, and so in the next cycle of jumps
the particles do not drag previous velocities.

We perform extensive simulations. Each simulation has
different values for � and � where �=0,1 /3,2 /3 and �
=0,1 /3,1 /2,2 /3. In each simulation, we calculate the MSD
for 30 particles from the file. For each simulation �defined
with a specific values for � and ��, the run time for the
simulation and the MSD calculations is 3 min on a standard
3.37 GHz PC.

Figure 1 presents the results for the MSD from all the
simulations. Each panel shows MSD curves for three values
of � each with the same value of �. The analytical curves
obtained from Eq. �18� are also shown. The curves coincide
with the numerical results to a satisfactory level. The only
point to note is that as � increases, converges occur at larger
times. This is an expected behavior for a file with nonfixed
particle’s density.

In light of the simulations’ results, a final remark is made
on the interpretation of the limit of long times. In this paper,
we used this limit in deriving the statistics of the file. We
gave along the paper and in the Appendixes several interpre-
tations for this limit. Yet, we can use Fig. 1 for further de-
fining the meaning of long times. Figure 1 shows that this
limit depends on the value of � and �: when � and/or � are
large, the coincidence of the simulations’ curves and the
curves obtained from Eq. �18� happens at relatively larger
times; plus, at smaller times, the difference among the curves
is, in most cases, larger when � and � are larger. So, we say
that long time corresponds to the time, t�, it takes a particle
to reach a distance r� from its origin that has n� particles in
it. t� is then estimated with Eq. �18�: r���n�1/�1−��

����Rd
2�. These relations give t����2 /	�n�2/���1−���, where

� is the scaling power in Eq. �18�. We use n�=35 as a safe
bound for t�, as the value of 35 �events� is considered a large
number in statistics. From Fig. 1, it is clear that also for n�

�9 the coincidence among the simulations’ results and the
curves obtained from Eq. �18� is excellent.

V. CONCLUDING REMARKS

This paper deals with normal stochastic dynamics of het-
erogeneous hard spheres in a very long strait. Each sphere
has a random diffusion coefficient drawn from a PDF,
W�D��D−� , 0���1, for small D. The initial positions are
also distributed such that the initial particles’ density law
obeys ��l���0�l /��−�, 0���1, where l is the distance
from the origin. We first derive the approximation for the
particles’ PDF for heterogeneous files:

P�x,t	x0� �
1

cN
�
p

exp
− 1

4t
�

j=−M

M �xj − x0,j�p��2

Dj
� .

From this PDF, we derive the statistics of the tagged particle
in heterogeneous files:

P�r,t	r0� �
1

cN
e−Rd

2/2�Rd
2�,

and

�Rd
2� = 2��1−��/�2c−��, c = 1/�1 + �� .

The same results for the tagged particle’s MSD were ob-
tained using additional two approaches: scaling law analysis
and numerical simulations. We also obtained results for de-
terministic files with a constant particles’ density and distri-
bution in velocities of the form of Eq. �5�; here, using scaling
law analysis, we found that the MAD obeys �	Rd	�
���1−��/�2−��. All the above results are useful for files in
which the particles are not identical and differ in, for ex-
ample, mass, size, or composition.

Still, there is an interesting generalization of the above;
this deals with anomalous files. In an anomalous file, the
underlying dynamics are such that the waiting time PDF for
individual jumps decays like a power law. �A waiting time
PDF in a Brownian file decays exponentially.� Anomalous
files may exhibit a rich spectrum of behaviors. We find in
preliminary calculations that the nature of the anomaly of the

FIG. 1. �Color online� The mean square displacement �MSD� on
a log-log scale from 12 different simulations. Each simulation has a
specific value for � and �, where �=0,1 /3,1 /2,2 /3 and �
=0,1 /3,2 /3. Each panel has a constant value of � �the smallest
value of � is in the top right panel and � increases in a z-like
shape�. Each curve �in a given panel� corresponds to a different
value of �, where a lower curve always has a smaller value of �.
The analytical curves from Eq. �18� are also shown and coincide
nicely with the results from the simulations. �The free parameter of
any analytical curve is always chosen to coincide best with the
curve of the simulation. Yet, the curve’s slope is obtained from Eq.
�18�.� Note that the x axis in the figure was obtained when moni-
toring the value of tj every 10Aj time units �A is a number� and then
taking the logarithm of the time vector. The Y axis is the logarithm
of the monitored MSD.
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file determines its statistical behaviors. For example,
renewal-anomalous files, in which all the particles attempt
jumping at the same time, are different than nonrenewal-
anomalous files, where each particle has its own clock of
waiting times �28�. Also, anomalous files with fluctuating
diffusion coefficients may lead to interesting phenomena;
this statement relied on a corresponding system with a free
particle: when a free stochastic particle performs anomalous
dynamics and its diffusion coefficient is drawn every jump

from a distribution, a transition in the rule for the power that
governs the effective waiting-time PDF of the dynamics is
seen �41�. Further analysis of anomalous files is still to come.

ACKNOWLEDGMENT

Funding for this work partially came from The Ministry
of Immigrant Absorption of the State of Israel, The Center
for Absorption in Science.

�1� B. Alberts, D. Bray, J. Lewis, M. Raff, K. Roberts, and J. D.
Watson, Molecular Biology of the Cell �Garland Publishing,
Inc., London, NY, 1994�.

�2� N. G. van Kampen, Stochastic Processes in Physics and
Chemistry �revised and enlarged edition� �North-Holland, Am-
sterdam, 1992�.

�3� G. H. Weiss, Aspects and Applications of the Random Walk
�North-Holland, Amsterdam, 1994�.

�4� T. M. Liggett, Interacting Particle Systems �Springer, New
York, 1985�.

�5� T. E. Harris, J. Appl. Probab. 2, 323 �1965�.
�6� D. W. Jepsen, J. Math. Phys. 6, 405 �1965�; J. L. Lebowitz and

J. K. Percus, Phys. Rev. 155, 122 �1967�.
�7� D. G. Levitt, Phys. Rev. A 8, 3050 �1973�.
�8� C. Rödenbeck, J. Kärger, and K. Hahn, Phys. Rev. E 57, 4382

�1998�.
�9� H. van Beijeren et al., Phys. Rev. B 28, 5711 �1983�.

�10� M. Kollmann, Phys. Rev. Lett. 90, 180602 �2003�.
�11� M. D. Jara and C. Landim, Ann. Inst. Henri Poincare, Sect. A

42, 567 �2006�.
�12� P. Kalinay and J. K. Percus, Phys. Rev. E 76, 041111 �2007�.
�13� K. Hahn and J. Kärger, J. Phys. A 28, 3061 �1995�.
�14� K. Hahn and J. Kärger, J. Chem. Phys. 100, 316 �1996�.
�15� A. Taloni and F. Marchesoni, Phys. Rev. Lett. 96, 020601

�2006�.
�16� D. S. Sholl and K. A. Fichthorn, Phys. Rev. E 55, 7753 �1997�.
�17� F. Marchesoni and A. Taloni, Phys. Rev. Lett. 97, 106101

�2006�.
�18� S. Alexander and P. Pincus, Phys. Rev. B 18, 2011 �1978�.
�19� R. Kutner, H. Van Beijeren, and K. W. Kehr, Phys. Rev. B 30,

4382 �1984�.
�20� K. Hahn and J. Kärger, J. Phys. Chem. B 102, 5766 �1998�.
�21� H. L. Tepper, J. P. Hoogenboom, N. F. A. van der Veget, and

W. J. Briels, J. Chem. Phys. 110, 11511 �1999�.
�22� K. K. Mon and J. K. Percus, J. Chem. Phys. 117, 2289 �2002�.

�23� O. Flomenbom and A. Taloni, EPL 83, 20004 �2008�.
�24� L. Lizana and T. Ambjörnsson, Phys. Rev. Lett. 100, 200601

�2008�.
�25� C. Aslangul, J. Phys. A 33, 851 �2000�; Europhys. Lett. 44,

284 �1998�.
�26� K. Hahn et al., Phys. Rev. Lett. 76, 2762 �1996�.
�27� T. Bandyopadhyay, EPL 81, 16003 �2008�.
�28� O. Flomenbom, Phys. Lett. A 374, 4331 �2010�.
�29� J. P. de Gennes, J. Chem. Phys. 55, 572 �1971�.
�30� J. Kärger and D. M. Ruthven, Diffusion in Zeolites and Other

Microscopic Solids �Wiley, New York, 1992�.
�31� G. Coupier, M. Saint Jean, and C. Guthmann, EPL 77, 60001

�2007�.
�32� P. H. Nelson and S. M. Auerbach, J. Chem. Phys. 110, 9235

�1999�.
�33� B. Lin, M. Meron, B. Cui, S. A. Rice, and H. Diamant, Phys.

Rev. Lett. 94, 216001 �2005�.
�34� R. Shusterman, S. Alon, T. Gavrinyov, and O. Krichevsky,

Phys. Rev. Lett. 92, 048303 �2004�.
�35� P. Demontis et al., J. Chem. Phys. 120, 9233 �2004�; R. L.

June et al., ibid. 94, 8232 �1990�; U. Hong et al., Zeolites 11,
816 �1991�.

�36� Q. H. Wei et al., Science 287, 625 �2000�; C. Lutz et al., Phys.
Rev. Lett. 93, 026001 �2004�.

�37� P. M. Richards, Phys. Rev. B 16, 1393 �1977�.
�38� H. Bethe, Z. Phys. 71, 205 �1931�.
�39� D. R. Cox and D. V. Hinkley, Theoretical Statistics �Chapman

and Hall, London/CRC, Boca Raton, 1979�.
�40� E. Barkai and R. Silbey, Phys. Rev. Lett. 102, 050602 �2009�.
�41� O. Flomenbom, Phys. Lett. A 373, 1405 �2009�.
�42� See supplementary material at http://link.aps.org/supplemental/

10.1103/PhysRevE.82.031126 for further discussion including
including: A—Solutions for simple files. B—P�x , t 	x0� for het-
erogeneous files. C—P�r , t 	r0� for heterogeneous files.

D—Calculations for D̃n.

OPHIR FLOMENBOM PHYSICAL REVIEW E 82, 031126 �2010�

031126-6

http://dx.doi.org/10.2307/3212197
http://dx.doi.org/10.1063/1.1704288
http://dx.doi.org/10.1103/PhysRev.155.122
http://dx.doi.org/10.1103/PhysRevA.8.3050
http://dx.doi.org/10.1103/PhysRevE.57.4382
http://dx.doi.org/10.1103/PhysRevE.57.4382
http://dx.doi.org/10.1103/PhysRevB.28.5711
http://dx.doi.org/10.1103/PhysRevLett.90.180602
http://dx.doi.org/10.1016/j.anihpb.2005.04.007
http://dx.doi.org/10.1016/j.anihpb.2005.04.007
http://dx.doi.org/10.1103/PhysRevE.76.041111
http://dx.doi.org/10.1088/0305-4470/28/11/010
http://dx.doi.org/10.1021/jp951807u
http://dx.doi.org/10.1103/PhysRevLett.96.020601
http://dx.doi.org/10.1103/PhysRevLett.96.020601
http://dx.doi.org/10.1103/PhysRevE.55.7753
http://dx.doi.org/10.1103/PhysRevLett.97.106101
http://dx.doi.org/10.1103/PhysRevLett.97.106101
http://dx.doi.org/10.1103/PhysRevB.18.2011
http://dx.doi.org/10.1103/PhysRevB.30.4382
http://dx.doi.org/10.1103/PhysRevB.30.4382
http://dx.doi.org/10.1021/jp981039h
http://dx.doi.org/10.1063/1.479092
http://dx.doi.org/10.1063/1.1490337
http://dx.doi.org/10.1209/0295-5075/83/20004
http://dx.doi.org/10.1103/PhysRevLett.100.200601
http://dx.doi.org/10.1103/PhysRevLett.100.200601
http://dx.doi.org/10.1088/0305-4470/33/5/303
http://dx.doi.org/10.1209/epl/i1998-00471-9
http://dx.doi.org/10.1209/epl/i1998-00471-9
http://dx.doi.org/10.1103/PhysRevLett.76.2762
http://dx.doi.org/10.1209/0295-5075/81/16003
http://dx.doi.org/10.1016/j.physleta.2010.08.029
http://dx.doi.org/10.1063/1.1675789
http://dx.doi.org/10.1209/0295-5075/77/60001
http://dx.doi.org/10.1209/0295-5075/77/60001
http://dx.doi.org/10.1063/1.478847
http://dx.doi.org/10.1063/1.478847
http://dx.doi.org/10.1103/PhysRevLett.94.216001
http://dx.doi.org/10.1103/PhysRevLett.94.216001
http://dx.doi.org/10.1103/PhysRevLett.92.048303
http://dx.doi.org/10.1063/1.1697382
http://dx.doi.org/10.1021/j100384a047
http://dx.doi.org/10.1016/S0144-2449(05)80061-2
http://dx.doi.org/10.1016/S0144-2449(05)80061-2
http://dx.doi.org/10.1126/science.287.5453.625
http://dx.doi.org/10.1103/PhysRevLett.93.026001
http://dx.doi.org/10.1103/PhysRevLett.93.026001
http://dx.doi.org/10.1103/PhysRevB.16.1393
http://dx.doi.org/10.1007/BF01341708
http://dx.doi.org/10.1103/PhysRevLett.102.050602
http://dx.doi.org/10.1016/j.physleta.2009.02.040
http://link.aps.org/supplemental/10.1103/PhysRevE.82.031126
http://link.aps.org/supplemental/10.1103/PhysRevE.82.031126

