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Renewal–anomalous–heterogeneous files are solved. A simple file is made of Brownian hard spheres
that diffuse stochastically in an effective 1D channel. Generally, Brownian files are heterogeneous: the
spheres’ diffusion coefficients are distributed and the initial spheres’ density is non-uniform. In renewal–
anomalous files, the distribution of waiting times for individual jumps is not exponential as in Brownian
files, yet obeys: ψα(t) ∼ t−1−α , 0 < α < 1. The file is renewal as all the particles attempt jumping at the
same time. It is shown that the mean square displacement (MSD) in a renewal–anomalous–heterogeneous
file, 〈r2〉, obeys, 〈r2〉 ∼ 〈r2〉αnrml, where 〈r2〉nrml is the MSD in the corresponding Brownian file. This scaling
is an outcome of an exact relation (derived here) connecting probability density functions of Brownian
files and renewal–anomalous files. It is also shown that non-renewal–anomalous files are slower than the
corresponding renewal ones.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

The stochastic motion of particles determines the behavior of
many processes in nature, e.g. [1–4]. An important process in the
studies of stochastic dynamics is the diffusion of N (N → ∞)
Brownian hard spheres in a quasi-one-dimensional channel of
length L (L → ∞) [4–41]. This system is termed file dynamics
(sometimes called, single file dynamics). In a basic Brownian file,
the spheres have the same diffusion coefficient D . The mean parti-
cles’ density, ρ , is fixed: ρ = ρ0 = N/L; namely, a constant average
microscopic distance among adjacent hard spheres, Δ (= L/N),
characterizes the system.

The applicability of file dynamics is vast. It models many micro-
scopic processes that occur in nature and in applications. Several
examples include [1,30–40]: (a) Diffusion within biological and
synthetic pores and in porous materials of water, ions, proteins,
and organic molecules [1,30]. (b) Diffusion along 1D objects, such
as the motion of motor-proteins along filaments [1]. (c) Conduc-
tance of electrons in nano-wires [40]. (d) File dynamics has also
been related to the dynamics of a monomer in a polymer [29,34].

In a basic Brownian file, the mean square displacement (MSD)

〈r2〉 of a tagged particle in the file scales as: 〈r2〉 ≈ (Dt)1/2

ρ0
, where

its corresponding PDF is a Gaussian (in position). These are the
most well-known statistical properties of basic Brownian files. Still,
in realistic systems, one, or several, of the conditions defining the
basic Brownian file may break down in a way that leads to dif-
ferent dynamical behaviors. For example, in some channels, the
particles may bypass each other with a constant probability upon
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collisions [19–22], and this may lead to an enhanced diffusion at
long times. Yet, when the particles interact with the channel, a
slower diffusion is observed [15]. When the initial particles’ den-
sity law is non-uniform [23]:

ρ(l) ∼ ρ0(lρ0)
−a, 0 � a � 1, (1)

enhanced diffusion is seen. The file’s middle particle’s MSD is ex-
pressed in terms of the free particle’s MSD, 〈r2〉free [23]:

〈
r2〉 ∼ ρa−1

0

〈
r2〉 1+a

2
free . (2)

ρ(l) in Eq. (1) is the initial density of the file; namely, the parti-
cles are positioned at, x0, j = sign( j)Δ| j|1/(1−a) , for | j| � M , where,
N = 2M + 1. Eq. (1) means that at the initial stage of the pro-
cess, the number of particles n as a function of the length l from
the origin obeys, n ∼ (lρ0)

1−a . Physically, Eq. (1) means that the
distance between particles increases as we look on particles po-
sitioned at larger and larger distances from the origin. As Eq. (2)
holds for the file’s middle particle, it reflects the expansion process
from the denser region in the middle of the file to the dilute region
in the periphery. Note that the density law in Eq. (1) is a simple
way to study the effect of a non-uniform particles’ density on the
dynamics in the file. We expect that most files naturally obey the
condition of a non-constant density, where Eq. (2) reflects files that
are very inhomogeneous in their density.

Eq. (2) was derived analytically in Ref. [23] for a Brownian file,
and was extended for any renewal file using scaling law analy-
sis. Here, a renewal file is a file in which all the particles attempt
jumping at same time, and the time for each attempt is an inde-
pendent random variable. (This condition is automatically fulfilled
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in a Brownian file, but not in general.) We use the term a renewal
process in accordance with this term in probability theory [42].

Eq. (2) is pretty general, yet limited to the other conditions of
a basic file; for example, Eq. (2) holds in a file that all its particles
have the same diffusion coefficient. Still, in many files the diffusing
particles are not identical. We have recently studied Brownian files
with a distribution in the diffusion coefficients. We termed such
files, heterogeneous files. Here, each particle’s diffusion coefficient
is taken randomly and independently from the PDF,

W (D) ∼ (1 − γ )Λ−1
(

D

Λ

)−γ

, 0 � γ < 1. (3)

In Eq. (3), Λ is the fastest possible diffusion coefficient in the file.
The initial conditions are still distributed according to Eq. (1). Us-
ing analytical calculations, we have showed that the MSD for the
tagged particle in a heterogeneous–Brownian files reads [28],

ρ2
0

〈
r2〉

nrml ∼
(
ρ2

0Λt
)μ

, μ = 1 − γ
2

1+a − γ
, (4)

where the corresponding PDF is a Gaussian. (In this Letter, μ al-
ways represents the scaling power of the MSD of Brownian files.)
Importantly enough, when setting γ = 0 in Eq. (4), one sees that
the scaling of the MSD of the heterogeneous file is the same as
that of a basic Brownian file, Eq. (2). Thus, Eq. (4) finds the con-
dition when W (D) affects the dynamics. Namely, when W (D) is
flat, the fact that the file is heterogeneous is not observed when
calculating the MSD; only when W (D) gives a significant weight
to small diffusion coefficients, the heterogeneity affects the dynam-
ics.

In this Letter, we consider an important extension of heteroge-
neous–Brownian files: renewal–anomalous–heterogeneous files. In
a renewal–anomalous file, all the particles attempt jumping at
same time, after residing in their positions for exactly the same pe-
riod of time. This random period is drawn each time independently
from a waiting time (WT-) PDF of the form: ψα(t) ∼ k(kt)−1−α ,
0 < α < 1, where k is a parameter. This is a renewal file: there is
only one clock in the system, and each trajectory of a given parti-
cle is a renewal process in the sense that the waiting periods are
independent random variables. The particles’ diffusion coefficients
are still drawn from W (D), Eq. (3), and the particles’ density ρ(l)
is not fixed, and obeys Eq. (1).

The physical model of renewal–anomalous files can relate
pretty naturally to the dynamics of particles in fluctuating pores.
Possible realizations of such files include: pores under on–off fields
or under temperature changes (say, controlled externally), sens-
ing devices (as was suggested for zeolites, e.g. [44]) under on–off
fields, and channels as sequencing devices (e.g. [45]) under on–off
fields. Let us also present such a possible system in detail: it con-
tains a channel that occupies one of two possible states, a state
that enables motion, and a state that doesn’t. When the channel
occupies the later state, the particles can easily bind to the chan-
nel. The dynamics of the complex process consist of the following
stages:

∗ The particles diffuse in a channel; the channel is in a mode
that enables motion.

∗ At random times, the channel switches to a mode that facili-
tates the binding of particles to the channel. In this mode of
the channel, all the particles bind to the channel very quickly.

∗ The particles disassociate from the channel at random times,
yet simultaneously, as this depends on the time that the chan-
nel changes its mode to a mode that enables motion.

These three stages form the model of the diffusion in a fluctuat-
ing channel. Now, in some cases, the stochastic binding times may

indeed be distributed according to a PDF of the form of ψα(t).
Recall that we have rationalize the synchronized disassociation of
the particles from the pore as a result of large scale fluctuations in
the channel shape; yet, the reason for a power-law WT-PDF may
be attributed to the interactions of the channel with a heteroge-
neous medium. It is known that the influence of a heterogeneous
medium on a diffusion object can lead to a power-law WT-PDF of
the form of ψα(t) for the diffusing object, e.g. [43], where here
the diffusing object is the state of the pore (a state that enables
diffusion in it and a state that allows fast particles binding to it).
Now, it is well known that bio-channels in physiological condi-
tions change their structure constantly [1] and are in contact with
a membrane that is heterogeneous in composition. Thus, renewal–
anomalous files may indeed serve as a promising choice for mod-
eling biological pores in not so few cases.

With the physical picture and several possible real-life real-
izations in mind, we focus our attention on solving renewal–
anomalous files. We prove here analytically that the MSD for
renewal–anomalous–heterogeneous files scales as the MSD of the
corresponding Brownian files raised to the power of α:〈
r2〉 ∼ 〈

r2〉α
nrml, (5)

where 〈r2〉nrml appears in Eq. (4). Eq. (5) is an outcome of a general
relation connecting PDFs of Brownian files and renewal–anomalous
files; this relation, Eq. (10), is proved here for the first time. Eq. (5)
generalizes our previous results in Eq. (2), where in Eq. (2) the
file’s MSD is related to free particle’s MSD of the same dynam-
ics. Now, we also show here that Eq. (5) can be obtained using
scaling law analysis, where such an analysis further explains the
relation among Brownian files and renewal–anomalous files. Fi-
nally, we show that when the file is non-renewal and anomalous,
the relation in Eq. (5) does not hold. Non-renewal–anomalous files
are much slower than their renewal counterparts.

2. Renewal–anomalous files

In this part, we first prove Eq. (5) analytically. We then come to
the same results using scaling-law analysis. Finally, we present re-
sults from extensive numerical simulations of renewal–anomalous–
heterogeneous files, which also support the relation in Eq. (5).
A short discussion on non-renewal–anomalous files is also pre-
sented. Yet, we start the discussion with a clear definition of the
physical model, using a simulation scheme.

2.1. The definition of a renewal–anomalous file

A very clear way to define the physical model of renewal–
anomalous files uses a simulation scheme. We suggest the fol-
lowing scheme [the mathematical definition of renewal–anomalous
files is presented in Eq. (9)]:

∗ a random waiting time τ is drawn independently from ψα(t),
∗ all the particles in the file stand still for this random period,
∗ after residing in their positions for a time period τ , all the

particles attempt jumping according to the standard rules of
the file.

∗ This procedure is carried on over and over and over again.

2.2. Analytical calculations

To analyze the dynamics of renewal–anomalous–heterogeneous
files, we write the equation of motion for the N-particle PDF of
the file. This equation is obtained from the equation of motion for
a Brownian file when applying a simple convolution on it. So, we
first write the equation of motion for a Brownian–heterogeneous
file; this reads,
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∂t Pnrml(x, t|x0) =
M∑

j=−M

D j∂x j ∂x j Pnrml(x, t|x0)

= Lμ Pnrml(x, t|x0). (6)

Here, Pnrml(x, t|x0) is the PDF that the file’s particles are located at
positions x, x = (x−M , x−M−1, . . . , xM), at time t starting from an
initial condition x0 at time, t0 = 0. Eq. (6) is solved with the appro-
priate boundary conditions, which reflect the hard-sphere nature
of the process:

(
D j∂x j Pnrml(x, t|x0)

)
x j=x j+1

= (
D j+1∂x j+1 Pnrml(x, t|x0)

)
x j+1=x j

,

j = 1, . . . , N − 1, (7)

and with the appropriate initial condition:

Pnrml(x, t → 0|x0) =
M∏

j=−M

δ(x j − x0, j),

x0, j = Δ sign( j)
(| j|) 1

1−a . (8)

The PDF for a renewal–anomalous–heterogeneous file is obtained
from Eqs. (6)–(7) when convoluting them with a kernel kα(t). In
particular, the equation of motion reads:

∂t P (x, t|x0) =
M∑

j=−M

D j∂x j ∂x j

t∫
0

kα(t − u)P (x, u|x0)du. (9)

The kernel kα(t) in Eq. (9) is related to the WT-PDF ψα(t) of the
same renewal dynamics; this relation is made in Laplace space (e.g.
[3]):

k̄α(s) = sψ̄α(s)

1 − ψ̄α(s)
,

where the Laplace transform of a function f (t) reads, f̄ (s) =∫ ∞
0 f (t)e−st dt .

We note that Eq. (9), for a uniform file (D j = D), was intro-
duced in Ref. [27]. Yet, we emphasize here that Eq. (9) holds only
for renewal–anomalous files; that is, for files in which all the
particles attempt jumping at the same time. This is the reason
that Eq. (9) has a form of a simple convolution. A non-renewal–
anomalous file, in which each particle has its own jumping-clock,
should have a different equation of motion, leading to a differ-
ent dynamical behavior than that of renewal–anomalous files. We
shortly discuss non-renewal–anomalous files in the next section,
and show that such files are slower than their renewal counter-
parts.

Now, we continue with the analysis of renewal–anomalous files,
Eq. (9), and write the PDF for the system in terms of the PDF that
solves the un-convoluted equation, Eq. (6). The relation is made in
Laplace space:

P̄ (x, s|x0) = 1

k̄α(s)
P̄nrml

(
x, s

k̄α(s)

∣∣x0
)
. (10)

Eq. (10) is a central result of this Letter: it relates renewal–
anomalous files and the corresponding Brownian files. To prove
Eq. (10), we formally solve Eq. (9) in Laplace space:

P̄ (x, s|x0) = (
s + k̄α(s)Lμ

)−1
Pnrml(x,0|x0)

= 1

k̄α(s)

(
s

k̄α(s)
+ Lμ

)−1

Pnrml(x,0|x0), (11)

and notice that Eq. (6) has a Laplace space solution of the form,

P̄nrml(x, s|x0) = (s + Lμ)−1 Pnrml(x,0|x0).

When using this equation in rewriting the last expression in
Eq. (11), we obtain Eq. (10).

From Eq. (10), it is straightforward to relate the MSD of normal
heterogeneous files and renewal–anomalous–heterogeneous files,

〈
r̄2(s)

〉 = 1

kα(s)

〈
r̄2

(
s

kα(s)

)〉
nrml

. (12)

Now, from Eq. (4) we have, 〈r2(t)〉nrml ∼ tμ , and in Laplace space,
〈r̄2(s)〉nrml ∼ s−1−μ , and so Eq. (12) gives,

〈
r̄2(s)

〉 = 1

k̄α(s)

(
s

k̄α(s)

)−1−μ

.

Using the asymptotic form of ψ̄α(s) (small s), ψ̄α(s) ∼ 1 − (sT )α ,
we find the kernel in Laplace space, k̄α(s) ∼ (sT )1−α , and 〈r̄2(s)〉
follows,

〈
r̄2(s)

〉 ∼ s−α(1+μ)

s1−α
= s−1−αμ.

This equation reads in time–space,〈
r2(t)

〉 ∼ tαμ. (13)

The above expression for the MSD of a renewal–anomalous file
has a very appealing consequence: one can use the results of a file
with normal dynamics raised to the power of α for obtaining the
results for the corresponding renewal–anomalous file,〈
r2(t)

〉 ∼ 〈
r2(t)

〉α
nrml. (14)

Eqs. (13)–(14) are among the main results of this Letter. Eqs. (13)–
(14) originated from a general relation connecting PDFs of rene-
wal–anomalous files and Brownian files, Eq. (10). In the next
section, the same results are derived using scaling law analy-
sis. This unravels another interesting relation connecting renewal–
anomalous files and Brownian files.

2.3. Scaling law analysis

In this section, we derive a similar relation to Eq. (13) in a
way that gives additional insights into the behavior of renewal–
anomalous files. First, we realize that a Brownian file is a renewal
file in which all the particles attempt a jump every time step dt .
This is simply seen when simulating the discrete-time version of
the equation of motion, Eq. (5). A consequence of this property
is that the average number of attempts to jump as a function
of the time, 〈 J (t)〉, scales, for any particle in the heterogeneous–
Brownian-file, as 〈 J (t)〉 ∼ t . This is found from the general relation
for 〈 J̄ (s)〉 for a renewal process with a WT-PDF ψ(t), e.g. [4],

〈 J̄ (s)〉 = ψ̄(s)
s(1−ψ̄(s))

, when using the fact that ψ(t) is an exponential

for a Brownian file. Now, when using this relation for ψα(t), we
find that for a renewal–anomalous file, 〈 J (t)〉 ∼ tα . The above is
used in the following way. First, we recall that for any renewal dy-
namics, 〈r2(t)〉free ∼ 〈 J (t)〉, e.g. [4], and use this in Eq. (2) for writ-

ing, 〈r2(t)〉 ∼ 〈 J (t)〉 1+a
2 . The next step uses the above also in Eq. (5),〈

r2(t)
〉 ∼ 〈

J (t)
〉μ

.

Taking this relation to hold for any renewal process, it is the same
as Eq. (13).

There is another way for using 〈 J (t)〉 in relating a Brownian
file with a renewal–anomalous file. Here, we take the trajectory
that changes its value every time step dt , and stretch each time
step dt to a random period drawn from the WT-PDF, ψα(t). Clearly,
this manipulation takes a trajectory with 〈 J (t)〉 ∼ t , and makes it a
trajectory with 〈 J (t)〉 ∼ tα . This suggests using the transformation
t → tα in 〈r2(t)〉nrml for obtaining 〈r2(t)〉; namely:〈
r2(t)

〉 ∼ 〈
r2(tμ)

〉
nrml. (15)
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Fig. 1. Trajectories from file dynamics. The left trajectory is obtained from a simulation of Eq. (5), with D j → D . The right trajectory is obtained from the left trajectory when
applying the time-scale manipulation described in Section 2.3, with α = 1

3 and k = 1. In the simulation, N = 501, dt = 0.13, Δ = 1, D = 1 and a = 1
3 .

Fig. 2. The MSD, on a log–log scale, from extensive simulations for the various values of a, γ and α. Each panel has distinct values of a and γ , written explicitly on the
panel, yet the value of α varies, α = 1

3 , 2
3 . The lower curve in each panel corresponds to α = 1

3 . The curves from our estimation for the MSD, Eq. (3), are also presented. The
coincidence with the results from the simulations is pretty clear in all cases.

We will use the above manipulation in the numerical calculations
presented in the next section.

2.4. Numerical simulations

Based on the above scheme for simulating renewal–anomalous
files, we present in this section the results from extensive simu-
lations. First, Fig. 1 shows a pair of trajectories: the left trajectory
is obtained from a simulation of Eq. (5) with a = 1

3 and γ = 0,
and the right trajectory is obtained from the left trajectory when
applying the manipulation described in Section 2.3, with α = 1

3 .
Note that the right trajectory is stretched one hundred thousand
times due to the timescale manipulation, forming the whole left
trajectory.

Now, for each renewal–anomalous trajectory, such as the right
trajectory in Fig. 1, we calculate the MSD. Note that the calcu-
lations of the MSD from renewal–anomalous trajectories demand
taking into account the fact that the original time vector has ran-
dom increments. The most efficient way to calculate the MSD for
such a form of the time vector creates, for each value of t in
〈r2(t)〉, a trajectory that is monitored in time interval of length t ,
and from this trajectory calculates the value of 〈r2(t)〉. The results
for the MSD for renewal–anomalous files are shown in the four
panels of Fig. 2. Each panel has a constant value of a and γ , taken
from the following values: a = 0, 1

3 , and, γ = 0, 1
3 , and shows two

curves of the MSD for the various values of α, α = 1
3 , 2

3 , where

α = 1
3 for the lower curve. Also shown are the analytical curves

from Eq. (13). The curves from the simulations coincide nicely with
the analytical curves. Note that the results for the MSD with α = 1

3
span twelve orders of magnitude.

We also present here preliminary results from simulations of
non-renewal–anomalous files. (A comprehensive study of such files
is the subject of our forthcoming publication in this field.) In
the left panel of Fig. 3, a trajectory from a simulation of a non-
renewal–anomalous file is shown in blue (upper curve in this
panel). For making a comparison explicit, a trajectory from a cor-
responding renewal–anomalous file is also plotted (lower curve,
black). The two trajectories are plotted as a function of the event
index. Clearly, this panel shows that only the non-renewal trajec-
tory shows anomalous patterns when plotted as a function of its
indices. Importantly, the time vectors of non-renewal–anomalous
files and renewal–anomalous files evolve in a similar way; this
is shown in the right panel in Fig. 3 that plots these time vec-
tors as a function of their indices. Basically, this figure shows that
non-renewal–anomalous files are much slower than their renewal
counterparts.

3. Concluding remarks

In this Letter, the dynamics of renewal–anomalous–heteroge-
neous files were considered. The heterogeneity is evident in both
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Fig. 3. Trajectories from a non-renewal–anomalous file (blue online, upper dashed curve) and renewal–anomalous file (black online, lower full curve), as a function of the
event index, are shown on the left panel. For both trajectories, a = 1

3 , γ = 0 and α = 1
3 (the other file’s information is as in Fig. 1). Clearly, the non-renewal–anomalous

trajectory shows anomalous patterns and not its renewal counterpart. The time vectors of both trajectories are of the same magnitude anywhere (right panel). In this right
panel the lower full curve corresponds to the time vector of the renewal–anomalous file, where the dashed upper curve stands for the time vector of the non-renewal file.

the initial particles’ density ρ at length l from the origin, obey-
ing, ρ(l) ∼ ρ0l−a , 0 � a � 1, and in the file’s diffusion coeffi-
cients, which are distributed according to the PDF, W (D) ∼ D−γ ,
0 � γ � 1, for small D . The underlying dynamics are anomalous:
any waiting time is taken independently from the PDF for individ-
ual jumps obeys: ψα(t) ∼ kαt−1−α , 0 < α < 1. We have showed
here that in a renewal–anomalous file, in which all the particles
attempt jumping at the same time, the mean square displace-
ment (MSD) of a particle in the file scales as 〈r2〉 ∼ 〈r2〉αnrml , where
〈r2〉nrml is the result for the MSD in a corresponding Brownian file.
This relation originates from a general relation connecting PDFs
of renewal–anomalous files with those of Brownian files. A micro-
scopic explanation for these relations was supplied: a trajectory
of any particle in a renewal–anomalous file can be obtained from
a trajectory of a corresponding particle in a Brownian file when
stretching each time increment in the Brownian trajectory to a ran-
dom length drawn independently from ψα(t). This basically leads
to the relation, 〈r2(t)〉 ∼ 〈r2(tα)〉nrml . Finally, it was also shown
here that non-renewal–anomalous files are slower than their re-
newal counterparts. In such files, the particles are anomalous, yet
each has its own clock of jumping times, meaning that Eq. (5) does
not describe the dynamics, and this indeed has a critical effect on
the dynamics. We will elaborate on such files in a forthcoming
publication.
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