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The signal from many single-molecule experiments monitoring
molecular processes, such as enzyme turnover by means of fluo-
rescence and opening and closing of ion channel through the flux
of ions, consists of a time series of stochastic ‘‘on’’ and ‘‘off’’ (or
open and closed) periods, termed a two-state trajectory. This signal
reflects the dynamics in the underlying multisubstate on–off
kinetic scheme (KS) of the process. The determination of the
underlying KS is difficult and sometimes even impossible because
of the loss of information in the mapping of the multidimensional
KS onto two dimensions. Here we introduce a previously unde-
scribed procedure that efficiently and optimally relates the signal
to all equivalent underlying KS. This procedure partitions the space
of KS into canonical (unique) forms that can handle any KS and
obtains the topology and other details of the canonical form from
the data without the need for fitting. Also established are rela-
tionships between the data and the topology of the canonical form
to the on–off connectivity of a KS. The suggested canonical forms
constitute a powerful tool in discriminating between KS. Based on
our approach, the upper bound on the information content in
two-state trajectories is determined.

canonical mechanisms � data analysis � fitting free relationships �
mapping � on–off kinetic schemes

The data from a wide range of single-molecule experiments
(1–23), i.e., the passage of ions and biopolymers through

individual channels (3–5), activity and conformational changes
of biopolymers (6–15), diffusion of molecules (16–19), and
blinking of nanocrystals (20–23), is inevitably turned into a
trajectory of ‘‘on’’ and ‘‘off’’ periods (waiting times) (Fig. 1A). A
frequently used assumption in the context of the listed processes
describes its corresponding mechanisms by multisubstate on–off
Markovian kinetic scheme (KS) (refs. 24–36; Fig. 1B). (This is
a fairly unrestrictive assumption in the context of the listed
processes because, in many cases, adding substates to the KS is
equivalent for describing the process by coupled stochastic (sub-)
processes; see also refs. 37–51.) The KS describes a discrete
conformational energy landscape of a biomolecule, chemical
kinetics with (or without) conformational or environmental
changes, stands for quantum states, etc. The underlying stochas-
tic dynamics of the process in the multisubstate on–off KS is thus
encoded in the two-state trajectory (the stochastic signal changes
value only when transitions between substates of different states
in the KS take place). The aim of single-molecule experiments
is to learn about the underlying KS to an extent that is unat-
tainable from bulk measurements due to averaging. However,
determining the KS from the two-state trajectory is difficult
because the number of the substates in each of the states, Lx (x �
on, off), is usually large, and the connectivity among the
substates is generally complex. A widely used approach for
deducing the KS relies on the construction of waiting time–
probability density functions (WT-PDFs): the WT-PDF of state
x (� on, off), �x(t), and the joint probability density functions
(PDFs) of two successive waiting times, x event followed by y
event, �x,y(t1, t2), x, y � on, off. [Higher-order successive WT-
PDFs do not contain additional information on top of �x,y(t1, t2)
(33)]. �x(t) and �x,y(t1, t2) are fitted to sums of exponents by

common methods, e.g., ref. 52. Then, a search for a KS that leads
to the fitted WT-PDFs is performed. Alternatively, a maximum-
likelihood method can be applied (24, 25), which demands first
assuming a KS topology. Although these techniques are fre-
quently used, looking for a possible KS that reproduces the data
is an exhaustive task. Moreover, there are KS with the same
WT-PDFs (26–32). A more sophisticated approach divides the
KS space into canonical (unique) forms. (Underlying KS with
the same canonical form are equivalent to each other; see,
however, the discussion in Examples and the Utility of RD Forms.)
Two divisions into canonical forms were previously suggested,
called, following Bruno et al. (30), manifest interconductance
rank (MIR) and Bauer–Kienker uncoupled (BKU) (31–32)
forms. MIR and BKU forms are useful in handling reversible
connection, nonsymmetric (i.e., the spectra of the �x(t) x � on,
off are nondegenerate), underlying KS, and are not so efficient
in discriminating between KS. In practice, MIR and BKU forms
are found from the data by using fitting procedures. Here, we
introduce previously undescribed canonical forms, called re-
duced dimensions (RD) forms, which can handle any KS, i.e.,
also KS with irreversible connections and�or symmetry. Rela-
tionships between fitting free properties of the data, the on–off
connectivity of the KS, and the RD form’s topology are estab-
lished. These relationships are used in mapping a KS into a RD
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Fig. 1. A two-state trajectory (A) and the KS (B) (Section E in Supporting Text
gives the technical details for generating the trajectory in A corresponding to
the KS in B). Here, we consider noiseless, infinitely long trajectories with
perfect time resolution, which idealizes experimental trajectories. The revers-
ible connection KS in B has Lon � 3 (substates in squares), Loff � 10 (substates
in circles), Non � Mon � 2, and Noff � Moff � 5. a.u., arbitrary units.
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form. A simple procedure for finding the RD form from the data
is given, where the topology and other details of the RD form are
determined without the need of fitting, which significantly
shortens the search time in the KS space. The suggested canon-
ical forms constitute a powerful tool in discriminating among KS.
Based on our approach, the upper bound on the information
content in two-state trajectories is set.

Methods
Our approach is based on expressing the WT-PDFs in an explicit
on–off connectivity representation (for any KS). As usual,
the on–off process is separated into two irreversible processes
that occur sequentially (24–36). For example, �x,y (t1, t2) (x � y)
is given by

�x,y �t1, t2� � �
ny�1

Ny � �
nx�1

Nx

Wnx
fny nx

�t1��Fny
�t2�

� �
mx��Mx�

� �
nx�1

Nx �
ny�1

Ny

Wnx
f̃mx nx

�t1��ny mx
Fny

�t2��. [1]

(In Section A in Supporting Text, which is published as supporting
information on the PNAS web site, expressions for �x(t) and
�x,y(t1, t2) are given.) Eq. 1 emphasizes the role of the KS
topology in expressing �x,y(t1, t2). Nx and Mx are the numbers of
initial and final substates in state x in the KS, respectively.
Namely, each event in state x starts at one of the Nx initial
substates, labeled, nx � 1, . . . , Nx, and terminates through one
of the Mx final substates, labeled mx � 1 . . . , Mx, for a reversible
on–off connection KS (Fig. 1B), or mx � Nx � 1 � Hx, . . . , Nx �
Mx � Hx, for an irreversible on–off connection KS (Fig. 2A),
where Hx (0 � Hx � Nx) is the number of substates in state x that
are both initial and final ones. (In each of the states, the labeling
of the substates starts from 1.) An event in state x starts in
substate nx with probability Wnx

. The first passage time PDF for
exiting to substate ny, conditional on starting in substate nx (x �
y), is fny nx

(t) and Fnx
(t) � ¥ny

fny nx
(t). Writing fny nx

(t) as fny nx
(t) �

¥mx
�ny mx

f̃mxnx
(t), emphasizes the role of the KS on–off connec-

tivity, where �ny mx
is the transition probability from substate mx

to substate ny, and f̃mx nx
(t)�ny mx

is the first passage time PDF,
conditional on starting in substate nx, for exiting to substate ny

through substate mx. (A sum zx � {Zx} is a sum over a particular
group of Zx substates.) Note that all of the factors in Eq. 1 can

be expressed by using the master equation (see Section B in
Supporting Text).

Results and Discussion
Rank of �x,y(t1, t2) and its Topological Interpretation. For discrete
time, �x,y(t1, t2) is a matrix, whose rank Rx,y (� 1, 2, . . .), which
is the number of nonzero eigenvalues (or singular values for a
nonsquare matrix) of its decomposition, can be obtained without
the need of finding the actual functional form of �x,y(t1, t2). By
using Eq. 1, which gives �x,y(t1, t2) as sums of terms each of which
is a product of a function of t1 and a function of t2, we can relate
Rx,y (x � y) to the topology of the underlying KS. When none of
the terms in an external sum on Eq. 1, after the first or second
equality, are proportional, Rx,y � min(Mx, Ny) (Fig. 1A and Figs.
5–7, which are published as supporting infromation on the PNAS
web site). Otherwise, Rx, y 	 min(nx, Ny) (Fig. 2E; see also Fig.
8, which is published as supporting information on the PNAS
web site, and Section C in Supporting Text), and Eq. 1 is is
rewritten such that it has the minimal number of additives in the
external summations

�x,y�t1, t2� � �
ny��Ñy�

� �
nx�1

Nx

Wnx
fnynx

�t1��Fny
�t2�

� �
mx��M̃ x�

� �
nx�1

Nx

Wnx
f̃mxnx

�t1�� � �
ny��Ñ y �

�ny mx
Fny

�t2��. [2]

This equation means Rx,y � Ñy � M̃x. Ñy and M̃x can be related
to the on–off connectivity of the KS. Consider a case where Mx
	 Ny, and there is a group of final substates in state x, {Ox} with
connections only to a group of initial substates in state y, {Oy},
and Ox 
 Oy (see Fig. 8). Then, M̃x � Mx � Ox and Ñy � Oy.
(Further discussion and a generalization of this relationship are
given in Section C in Supporting Text.)

RD Form. The Rx,y values are obtained from the �x,y(t1, t2) x, y �
on, off without the need of finding its actual functional forms,
thus constituting a fitting-free relationship between the data to
the on–off connectivity and details of the underlying KS. Using
this relationship, the KS space is divided into canonical forms,
RD forms, using the Rx,y values. Excluding KS with symmetry,
Rx,y (x � y) is the number of substates in state y in the RD form
(see also the discussion in Additional Relationships Between the
Data, RD Form, and KS). RD forms can represent underlying KS
with symmetry and irreversible connections because they are
built from all four Rx,y values. The RD form has the minimal
number of substates needed to reproduce the data. This number
is smaller or equal to the number of independent on–off
connections in the MIR form (see Section D in Supporting Text).
(The equality holds for nonsymmetric, reversible connection
KS.) Connections in the RD form are only between substates of
different states, as in the BKU form. Unlike the MIR and BKU
forms, for each connection in the RD form there is a WT-PDF
that is not necessarily exponential.

Mapping a KS into a RD Form. Mapping a KS into a RD form is
based on clustering of (some of) the initial substates in the KS,
depending on the on–off connectivity of the KS. Such clusters
are one of the two kinds of substates in the RD form, where the
second kind originates from single initial substates in the KS. For
a nonsymmetric KS, initial substates in state y in the KS that
contribute to Rx,y (x � y) are mapped to themselves, and those
that do not contribute to Rx,y are clustered, where initial-y-state
substates in a cluster are all connected to the same final-x-state
substate that contributes to Rx,y. (When the substate mx has a

Fig. 2. Indistinguishable KS. (A–D) KS in A–C have the simplest RD form (D)
of one substate in each of the states. The KS in A–C are equivalent when they
have the same �on(t) and �off(t). (E–G) Equivalent KS in E and F have Rx,y � 2,
x, y � on, off, and triexponential �on(t) and �off(t). The corresponding RD form
is shown in G.
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single exit connection to substate ny, which is its only entering
connection, substate ny is defined as the one contributing to the
rank.) For example, the KS in Fig. 1B is mapped into a RD form
(Fig. 3D) when clustering substates 1off–2off and substates 3off–
5off into the RD form’s substates 1off and 2off, respectively,
because none of the initial-off-state substates contribute to
Ron,off. The initial on substates are mapped to themselves
because they both contribute to Roff,on.

The clustering procedure fully determines the WT-PDFs for
the connections in the RD form (technical details for obtaining
these WT-PDFs given a KS are discussed in Section C in
Supporting Text). Note that the clustering procedure, along with
the fact that substates in the KS that are not initial or final ones
do not affect the RD form’s topology, reduce the KS dimen-
sionality to that of the RD form.

Finding the RD Form from the Data. The following steps can be used
for finding the RD form from the data (when fitting is needed,
we rely on known procedures, e.g., refs. 24, 25, and 52). (i) Find
the number of substates in the RD form using decomposition of
the �x,y(t1, t2) x, y � on, off. (ii) Obtain the spectrum of the �x(t)
x � on, off using fitting procedures. The spectrum of the
WT-PDFs for the x to y (x � y) connections in the RD form is
the same spectrum as that of �x(t), because substates of the same
state in the RD form are not connected. Differences lie in the
preexponential coefficients. (Steps i and ii can be permutated.)
(iii) Apply fitting procedures for finding the preexponential
coefficients of the WT-PDFs for the connections in the RD.
(Other technical details for constructing the RD form from the
data are discussed in Section E in Supporting Text and Figs. 9–13,
which are published as supporting information on the PNAS web
site.)

Examples and the Utility of RD Forms. The simplest topology for a
RD form has one substate in each of the states, namely, Rx,y �
1 (x, y � on, off), and the only possible choice for the WT-PDFs
for the connections is �on(t) and �off(t) (Fig. 2D). This RD form
means that all of the information in the data is contained in
�on(t) and �off(t). Consequently, KS with Rx,y � 1 (x, y � on, off)
and the same �on(t) and �off(t) are indistinguishable (assuming
no additional information on the mechanism is known). Exam-
ples of such KS are shown in Fig. 2 A–C. This case was discussed
in refs. 26–28. The generalization of the equivalence of KS for
any case is straightforward using RD forms. KS with the same
Rx,y values and the same WT-PDFs for the connections in the RD
form cannot be distinguished. Indistinguishable KS with Rx,y �
2 (x, y � on, off) and triexponential �on(t) and �off(t) and the
corresponding RD form are shown in Fig. 2 E–G.

Clearly, two KS with different Rx,y values can be resolved by
the analysis of a two-state trajectory. Among the advantages of
RD forms is in providing a powerful tool in resolving KS with the
same Rx,y values, and the same number of exponentials in �on(t)
and �off(t), even without the need of performing actual calcu-
lations, based only on distinct complexity of the WT-PDFs for
the connections in the corresponding RD forms (compare the
KS in Fig. 3 A and B) or on different connectivity of RD forms
(compare KS in Fig. 3 A and B with that in Fig. 3C).

Perhaps it is worthwhile stressing that the above general
statement implies that it is impossible to find positive (
0)
transition rates for the KS in Fig. 3 A–C that make the �x,y(t1, t2)
x, y � on, off from these KS the same, so these KS can be
distinguished by analyzing a two-state trajectory (excluding
symmetric cases for which Rx,y � 1, @x, y).

Note that a RD form can preserve microscopic reversibility on
the on–off level even when having irreversible connections.
These can be balanced by the existence of direction-dependent
WT-PDFs for the connections. (Microscopic reversibility in a
RD form means that the �x,y(t1, t2) x, y � on, off obtained when
reading the two-state trajectory in the forward direction are the
same as the corresponding �x,y(t1, t2) x, y � on, off obtained when
reading the trajectory backwards, as suggested in ref. 36 for
aggregated Markov chains. Using matrix notation, microscopic
reversibility means �x,y(t1, t2) � [�y,x(t1, t2)]T, where T stands for
the transpose of a matrix.)

The division of KS into equivalence groups (RD forms) is
useful also when, on top of the information extracted from the
‘‘original’’ two-state trajectory, additional information about the
observed process is available. [Additional information can be
inferred, under some physical assumptions, by analyzing differ-
ent kind of measurements, e.g., the crystal structure of the
biopolymer, or by analyzing two-state trajectories while varying
some parameters, e.g., the substrate concentration (13–15)].
Suppose that the connectivity of the underlying KS is unchanged
by the manipulation. Then, the additional information can be
used to resolve KS that correspond to the RD form found from
the statistical analysis of the original two-state trajectory,
whereas any KS with a different RD form is irrelevant. Alter-
natively, when manipulating the system leads to a change in the
connectivity of the underlying KS, or even to the addition or
removal of substates, the RD forms obtained from the different
data sets are distinct. Either of these possibilities is identifiable
using RD forms and the corresponding KS; in the first case an

Fig. 4. A KS with different Rx,y values, Ron,on � 2, Roff, off � 1, Ron,off � 4, and
Roff,on � 2. The values for Ron,on and Roff,off are apparent in the functional form
of the WT-PDFs for the connections. (A and B) The KS is divided into two parts,
on state (A) and off state (B), for a convenient illustration. The filled substates
are the initial ones, and those with directional arrows are the final ones (an
arrow represents connections to all of the initial substates of the other state).
The striped substates in state y are those that contribute to the rank Rx,x; these
substates are the minimal number of substates among which the random walk
must visit in each event in the state. (C) The RD form is shown.

Fig. 3. Distinguishable KS with Rx,y � 2, x, y � on, off and biexponential �on(t)
and �off(t). (We exclude symmetry in this example.) The KS in C is distinct from
the KS in A and B, because the corresponding RD forms, E and D, respectively,
have different connectivity. The KS in A and B are also distinct, because the
WT-PDFs for the connections in the RD form of the KS in A are exponential,
whereas those of the KS in B are direction-dependent and biexponentials.
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adequate parameter tuning relates the RD forms obtained from
the various sources, whereas in the second case the RD forms
cannot be related by a parameter tuning.

Additional Relationships Between the Data, RD Forms, and KS. Ad-
ditional relationships between the data, RD forms, and under-
lying KS are discussed below when considering two cases. (i) All
of the Rx,y values are the same. For such cases, Rx,y is the number
of substates in each of the states in the RD form. Also, the
number of exponents in �x(t) is the number of substates in state
x in the (simplest) underlying KS. (ii) Some of the Rx,y values are
different. For such cases, the KS must have irreversible on–off
connections and�or symmetry. (iia) When Ron,off � Roff,on, there
are irreversible on–off connections in the underlying KS. (iib)
When Rx,y � Rz,z (x � y) for both values of z � on, off, Rx,y is the
number of substates in state y in the RD form. (iiic) When Rz,z 

Rx,y for the other three combinations of x and y, Rz,z is the number
of substates of both states in the RD form, and there is symmetry
in state z� (� z) in the underlying KS. Take, for example, the KS
in Fig. 3C, with the on to off transition rates having the same
value. Then, Ron,off � Roff,on � Ron,on � 1, and Roff,off � 2, but
the topology of the RD form is the same as that in Fig. 3E. (iid)
When Rx,z 
 Rz,z (x � z), there are irreversible on–off connec-
tions and a special connectivity in state x in the KS. In particular,
Rz,z is the minimal number of substates in state x of the KS among
which the random walk must visit in each event in that state. Fig.
4 shows an example for such a case, with Hx � 0 and no direct
connections between substates in {Nx} and substates in {Mx}.

Concluding Remarks
The main effort in this work is to use the information content in
an ideal (noiseless, infinitely long) two-state trajectory for an
efficient elucidation of a unique mechanism that can generate it.
Accordingly, the KS space is partitioned into canonical forms
that are (usually) not Markovian, where a canonical form is
determined by the ranks of the �x,y(t1, t2) x, y � on, off and the
(usually nonexponential) WT-PDFs for the connections among
substates of different states in the canonical form. The relation-
ships between the (fitting-free) Rx,y values, the on–off connec-
tivity of the KS, and the RD form’s topology are the basis for our
results, where the mathematical support is provided by Eqs. 1
and 2.

As a final remark, note that, in principle, one can collect
successive x–y events in a selective way, such that the decompo-
sition of the obtained two-dimensional histogram has one non-
zero eigenvalue (see Section E in Supporting Text). The number
of these rank-one x–y histograms is equal to the corresponding
Rx,y and are the terms in a particular external sum in Eq. 1 or 2.
Although as Rx,y increases it becomes harder to obtain these
rank-one x–y histograms, they supply more details on the WT-
PDFs for the connections in the RD form than their sum and
therefore can be viewed as the upper bound on the information
content in a two-state trajectory.

This work was suppported by the National Science Foundation.
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