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In random walks, the path representation of the Green’s function is an infinite sum over the length of path
probability density functions (PDFs). Recently, a closed-form expression for the Green’s function of an arbi-
trarily inhomogeneous semi-Markovian random walk in a one-dimensional (1D) chain of L states was obtained
by utilizing path-PDFs calculations. Here we derive and solve, in Laplace space, the recursion relation for the
n order path PDF for the same system. The recursion relation relates the n order path PDF to L/2 (round
towards zero for an odd L) shorter path PDFs and has n independent coefficients that obey a universal formula.
The z transform of the recursion relation straightforwardly gives the generating function for path PDFs, from
which we recover the Green’s function of the random walk, but, moreover, derive an explicit expression for
any path PDF of the random walk. These expressions give the most detailed description of arbitrarily inho-

mogeneous semi-Markovian random walks in 1D.
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I. INTRODUCTION

Random walks [1-16] appear in the description of a wide
variety of processes in biology, chemistry, and physics
[17-33]. Relevant familiar processes include enzymatic ac-
tivity [3,16,20-23], chemical kinetics [ 1-3], and polymer dy-
namics [4]. Random walks are ubiquitous because they sup-
ply the platform for explaining the stochastic behavior
observed in many processes in nature. Probability density
functions (PDFs) in time, which are obtained when averag-
ing over stochastic paths, are the mathematical deterministic
objects that describe random processes. These objects can be
represented by a number of different formulations: the dis-
crete in space master equation [1-3,5,8] and the generalized
master equation [9,10], the continuous in space and time
Fokker Planck equation [4] and its generalizations [15], con-
tinuous time random walk, which represents jump processes
that are either discrete or continuous in space [6,9—12], and
the renewal theory [7]. For each of these formulations there
is also a path representation, e.g., [4,7,13,14]. The network
of relationships among the various descriptions provides a
powerful tool in the analysis of random walks.

Path PDFs are obtained when averaging only over sto-
chastic paths of the same length. Path PDFs analysis is found
useful in many systems, e.g., [4,5], and enter naturally in the
evolving field of single molecules [17-33]. In single mol-
ecules, path PDFs and special correlation functions, which
cannot be obtained from ensemble measurements, enable the
discrimination of distinct random walk models that have
some properties in common, e.g., the bulk relaxation func-
tion [19-22,24-28]. This, in turn, demands a detailed theo-
retical analysis of random walks. In particular, many of the
recent measurements of single molecules yield two-state tra-
jectories [17-22,24-31]. Path PDFs of two successive events
contain all the information in such data [26,28,29]. There are
systems, e.g., ion channels [18] and motor proteins [23],
whose measured dynamics are random walks along L(>2)
states. Path PDFs can be constructed from such measure-
ments and used to explain them.

In this paper, we study path PDFs of semi-Markovian
random walks in arbitrarily inhomogeneous one-dimensional
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(1D) chains with L states. A semi-Markovian random walk is
a random walk whose dynamics are described by the (possi-
bly) state- and direction-dependent waiting time (WT) PDFs,
Ui (1) = 01;9;21:(1), for transitions between states i and
i+1, that generates stochastic trajectories of uncorrelated
waiting times which are nonexponentially distributed. wy; is
the transition probability from state j to state k, and obeys
the normalization condition Z,w;;=1Vj. ¢(¢) is a normal-
ized WTPDF for the transition from state j to state k, and
obeys [(@y(t)dt=1, Vk and V; (Fig. 1). The dynamics can
also include state- and direction-dependent irreversible trap-
ping WTPDFs, ()= w;;¢;(1), with I=i+L, and these trap-
ping WTPDFs determine the boundary conditions. The envi-
ronment is arbitrarily inhomogeneous when a different
WTPDF is assigned to each transition, and without specify-
ing a functional form to any WTPDF. (Mathematically, an
arbitrarily inhomogeneous environment forces us to count all
possible sequences in the calculations of path PDFs. Clearly,
any particular case, e.g., the homogeneous case, can be ob-
tained from the results for path PDFs in an arbitrarily inho-
mogeneous environment.) The path representation of the
Green’s function G;;(t;L) of the process, which is the PDF of
occupying state i at time ¢ when starting at state j exactly at
time 0, is formally given by

Gij(l‘;L)=f W;(I—T)<Ewij(7,2n+ y,-j;L))dT. (1)
0

ﬂ'/’l-1;-/’ " ﬂ wilt)
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FIG. 1. A part of a semi-Markovian chain in 1D with directional
WTPDFS, .1,(1) = 0;s1;¢121:(2) and ;(t) = w;;;(7). A way to simu-
late such a random walk is to first draw a random number out of a
uniform distribution that determines the propagation direction ac-
cording to the transition probabilities, and then to draw a random
time out of the relevant WTPDE.
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In Eq. (1), W(t)=2,Wy,(1), where W;(s)= 0w [1-(s)]/s,
and g(s)=[;g(t)e™dr is the Laplace transform of g(7). The
above process is also a continuous time random walk and has
an equivalent generalized master equation representation for
the Green’s function [9,10,13,14]. The expression in the
large parenthesis in Eq. (1) defines W;,(¢;L),

oo

W,(t;L) = > wii(t,2n + y;;5L), (2)
n=0

where w;(t,2n+v,;;L) is the path PDF that is built from all
paths with 2n+,; (y;/=|i—j|) transitions connecting states j
to i, and each path lasts exactly time ¢. Two different path
types contribute to w;(¢,2n+1v,;;L) [14]: (1) paths made of
the same states appearing in different orders and (2) different
paths of the same length of 2n+ v;; transitions. Path PDFs for
translation invariant chains are monopeaked in time. Path
PDFs for translation invariant chains largely contribute to the
Green’s function in the vicinity of its peak, and this relation-
ship should hold in inhomogeneous chains as well.

In this paper, we derive and solve, in Laplace space, the
recursion relation for w;(s,2n+7,,;L) in the length n for
any chains length and environments details in 1D. The recur-
sion relation is linear in path PDFs with n independent coef-
ficients, and is of order L/2 (round towards zero for an odd
L). The recursion relation for path PDFs [Eq. (10)] and its
solution [Egs. (12)—(15)] are the main results of this paper.
The path PDFs of this paper are useful in the analysis of
experimental measurements and in theoretical analysis of
random walks. For example, path PDFs are the building
blocks in approximations of Green’s functions. As shown
here, path PDFs are useful in explaining properties of the
Green’s function.

II. GREEN’S FUNCTION

For the current discussion, it is important to present the
closed-form expression for G;;(t;L) in Eq. (1) for a random
walk in an L-state arbitrarily inhomogeneous 1D chain. This
solution was obtained recently in [13] by utilizing the path
representation of the Green’s function. However, a recursion
relation for a general order path PDF was not derived in [13],
and consequently the expression for the n order path PDF
was not found. As noted in the Introduction, the analysis of
path PDFs given in this paper is used to explain some prop-
erties of the Green’s function that is given below in Eqgs.
(3)-(6).

The formula for the Green’s function for the most general
1D random walk, given in terms of the input WTPDFs, reads

[13]

CD(S;L)\I_ri(s) = Wij(s;L)‘r’[(S)’ 3)

Gj(s;L) =T;(s)

O(s;L)

where Z:L—'yij. In Eq. (3),
i1

Tyj) =11 hann(s). i#j; Tilo)=1. (4)
kej
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fij(s) is the path of direct transitions connecting the initial
and final states. [The plus (minus) sign in Eq. (4) corre-
sponds to the case i>j (i<j).] The factor ®(s;L)/D(s;L)
originates from all possible transitions between the initial
and final states. CI_D(s ;L) depends only on the system length L,

[L/2]
O(s;L) =1+ X, (- 1)h(s,i;L); L>1, (5)
i=1
with
i L-1-2(i-))
ns.i:D) =11 > fki(s); ]_ckj(s)=Lijk/H(S)leijj(s),
1 kg2 : i K

(6)

where ky=—1. For L=1, ®(s;1) = 1. In this paper, the symbol
[L/2], as appearing in the upper bound of the sum in Eq. (6),
is the floor operation (round towards zero). Finally, the factor
®(s;L) in Eq. (3) has the same form as ®(s;L), given by
Egs. (5) and (6), but it is calculated on a lattice L. Lattice L
is constructed from the original lattice by removing the states
i and j and the states between them, and then connecting the
obtained two fragments. The states in each of the fragments
have their corresponding WTPDFs. The WTPDFs in the in-
terface between the two fragments do not exist in the original

lattice, and, therefore, these WTPDFs vanish in lattice L. For
cases in which a fragment is a single state, this fragment is

excluded; namely, lattice L is the longer fragment. When
each fragment is not larger than a single state, d(s;L)=1.

Clearly, (_},j(s;L) in Egs. (3)—(6) solves the corresponding
continuous time random walk problem and the equivalent
generalized master equation. Equations (3)—(6) enable ana-
lyzing semi-Markovian random walks in 1D chains from a
wide variety of aspects. Inversion to time domain gives the
Green’s function, but also moments and correlation functions
can be calculated from Egs. (3)—(6), and then inverted into

the time domain. The closed-form (_;; j(s;L) also manifests its
utility when numerical inversion of the generalized master
equation is unstable. Moreover, using (_}ij(s ;L) in simple ana-
lytical manipulations gives [13,14]: (i) the first passage time
PDF, (ii) and (iii) the Green’s functions for a random walk
with a special WTPDF for the first event and for a random
walk in a circular L-state 1D chain, and (iv) joint PDFs in
space and time with many arguments.

II1. PATH PDFs

Complementary information on the random walk to that
supplied by the Green’s function is contained in path PDFs.
Formally, this is evident in Eq. (1): path PDFs partition the
Green’s function into physically meaningful objects, but
knowing the Green’s function does not give path PDFs. The
usefulness stemming from this partition appears in both ana-
lytical and numerical studies of random walks and in analy-
sis of experimental data.
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We start the analysis of path PDFs by introducing the
recursion relations for small chains, which are found by di-
rect counting of paths. We then extend these results for a
general L using physical and mathematical arguments. We
note here that any recursion relation given in this paper cor-
responds to path PDFs that connect the edge states,
wy(t,2n+v,;L). This is sufficient because V_V,-j-(s;L), which
is the Laplace transform of Eq. (2), can be written as a prod-
uct of two PDFs that connect the edge states of different
lattices, V_l/ij(s;L)=WlL(s;L)/VT/IZ(s;Z). Here, WIZ(S;Z) con-
nects the edge states of the reduced lattice L. Now, recall that
V_V,-j(s;L) is obtained from the z transform [¢(z)=2,g,z"] of
path PDFS, Vivl'j(s 5 2Z+ 'ylj,L) =E::0Wij(s N 2n+ ’yij;L)Zn, by
substituting z=1. Continuation of the ratio relationship for
v%ij(s,2z+ ¥,;sL)|.=1 to any value of z relates path PDFs that
connect internal states in the original lattice with path PDFs
that connect the edge states in the original and the reduced
lattices.

The recursion relation for path PDFs for a chain of two
states contains only one successive shorter path PDF,

Wia(s,2n+ 1;2) =wio(s,2(n—1) + 1:2)h(s,1;2) + 5n0f12(s),
(7)

and, in fact, w,(s,2n+1;2) is associated with only one path.
[In Eq. (7), h(s,1;2)=f,(s), as can be obtained from Eq. (6)

with the appropriate substitution for L. However, E(s, 1;2) in
Eq. (7) is found by a direct counting of paths and is nor a

quote of Eq. (6). This statement is true for all the h(s,i;L)’s
given in the recursion relations for particular chain lengths
derived in this paper, i.e., Egs. (7)—(9).] The second term on
the right-hand side (rhs) in Eq. (7) represents the initial con-
dition. Note that the notation in the path-length argument of
wia(s,2(n—1)+1;2) distinguishes between the contribution
to the path PDF from the back transitions, 2(n—1), and the
contribution to the path from the direct transitions, 1=y,.
Also, for n values that lead to(n—i)<0 in wj,(s,2(n—i)
+7v12;2), the path PDF is set to zero. These notations and
conventions are also used in path PDFs of larger chains.

For L=3, the recursion relation for w5(s,2n+2;3) is for-
mally identical to the L=2 case,

Wia(5,2n+2:3) = wi5(5,2(n — 1) + 2:3)h(s,1;3) + 8,00 15(s).

(8)
Equations (7) and (8) are formally identical and this means
that path PDFs for L=2 and 3 are also formally identical.
Specifically, w,;(s,2n+v,,;L)=T.(s)[h(s,1;L)]" for L=2,
3. The important difference between w;,(s,2n+1;2) and
wi3(s,2n+2;3) lies in the different forms of the h(s,1;L),
which is also the important difference in the corresponding
recursion relations: h(s,1;3)=f,(s)+f>(s), but h(s,1;2)
=f,(s). The fact that h(s,1;3) is a sum of two terms indicates

that w5(s,2n+2;3) originates from more than one path. In
fact, w5(s,2n+2;3) originates from 2" paths [14].
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Next, we consider chains of length L=4 and 5, for which
the recursion relations are also formally identical to each
other, but, in contrast to the L=2, 3 cases, require informa-
tion from two successive shorter path PDFs. Moreover, the
shorter path PDF appearing in the recursion relation has a
negative sign, which means subtraction of paths. The recur-
sion relation for wy;(s,2n+ vy, ;L), L=4, 5, reads

wiL(s,2n+ yi3L) =W, .(5,2(n = 1) + .3 L)A(s,15L)
= w1.(5,2(n = 2) + y11:L)h(s,2;L)
+ 8,00 1.(s). 9)

If the second term on the rhs in Eq. (9) is neglected, the n

order path PDF is simply the n power of h(s,1;L), as is
observed for the smaller chains. This scaling, however, rep-
resents also discontinuous paths [13,14]. The correction is
proportional to the path PDF of order n—2. The proportion-
ality constant must have the length of four transitions by

demanding conservation of path length. h(s,2;L) satisfies
this demand.

Based on the derived recursion relations for small chains,
we introduce the recursion relation for wy;(s,2n+ vy, ;L) for
a general L,

[L/2]
Wi (s.2n+ yi L) = 2 (= 1) (s, iz L), (s,2(n — i)
i=1

+yiL) + 5n0flL(S)- (10)

Equation (10) has a convolution form both in path length and
in time. An educated guess could suggest a convolution form
for such a quantity. The calculations for the smaller chains
not only verify this form, but also enable the determination
of the details of the recursion relation for wy; (s,2n+ 7y, ;L)
for a general L. The nontrivial details in Eq. (10) are the
order of the recursion relation and its coefficients.

We explain Eq. (10) with the following reasoning. The
recursion relations for the small chains are linear in path
PDFs with n independent coefficients, and these two proper-
ties must be independent of L. The same is true for the order
of the recursion relation; it was shown that the recursion
relation for a chain of L=2, 3, 4, 5 states is of the order of
[L/2], and this property must be independent of the specific
value of L. Equation (10) leads to the Green’s function in
Egs. (3)—(6) when the coefficients in the recursion relation
are the h(s,i;L)s of Eq. (6). This is seen by applying a z
transform on Eq. (10). Utilizing the fact that the recursion
relation is linear in path PDFs with n-independent coeffi-
cients, the z transform is easily done and leads to the expres-
sion for the path PDF generating function,

Wiz(s.22+ Yi1:L) = 2 Wy(s.2n + ¥, L)7"
n=0
[L12] -1

=T ()] 1 - > (= D)*h(s,is L)

i=1

(11)
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Setting z=1 in Eq. (11) leads to W, (s;L). Taking the n de-
rivative (with respect to z) of Eq. (11) and substituting z=0
gives n!wy(s,2n+y,.;L), but w;;(s,2n+vy,, ;L) can also be
obtained from a Taylor expansion of Eq. (11). The result can
be written in the form

n

wir(s,2n+ yiL) =T (s) 2 [E(l,S;L)]kOEkO(&L),

ko=ag
(12)
where ¢; (s;L) is given by
i-1
[L2]-1 n_j=0kj
a0 =11 2 &0, (13)
=1 j=0
with
k h(s.i+1:0) |
i— S, 5
g‘ki(s;L)=< k‘)(— _—) : (14)
i h(s,i;L)

For L=2, 3, Eko(s;L)E 1. In Egs. (12) and (13), the param-
eter a;, that appears in the lower bound of summations is
given by
i-1
n— 2 ki+[L2]-1-i
=0

; i>0, (15)

ai,n -

[L12]-i

and

_[n+[L/2]—1}
R T

IV. CONCLUDING REMARKS

In this paper, we studied path PDFs of the most general
random walk in 1D. We derived and solved a recursion rela-
tion for the path PDFs. The formula for the n order path PDF
[Egs. (12)—(15)] can be easily implemented in a computer
program, but can also be a starting point in an analytical
analysis. In an invariant chain, w;(s,2n+ 7y, ;L) can be ap-
proximated by W, (s,2n+7y,.;L)=2P,(ss)[@(s)]- 12",
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where P;(ss) is the probability to occupy state L in steady
state [ 14]. The recursion relation for path PDF in Eq. (10), its
relationship to the Green’s function in Egs. (3)—(6) (see also
the remark below), and the general expression for path PDFs
in Egs. (12)-(15) are the main results of this paper.

The final point in this paper gives support to the universal

formula for h(s,i;L) in Eq. (6). [The term “universal for-

mula” means that one formula defines f_z(s,i ;L) for a fixed i
and any L, and for a fixed L and any i.] First, recall that the
structure of the recursion relation in Eq. (10) is universal,
and this indicates that the coefficients should also be univer-
sal. Now, A(s,1;L) is universal because h(s,1;L)T;;(s) is
the path PDF that contains all paths with one back transition,
so, h(s, 1 ;L):EiLz_llj_‘,»(s) for any L. We extend this universal-
ity of i(s,i;L) with L and any fixed i by noting that when a
given h(s,i;L) first enters the recursion relation, the recur-
sion relation has the same form as the recursion relations for
all the smaller chains that contain the i order. [This is a
consequence of the demand that for values of n that lead to
(n—i)<0 in wy;(s,2(n—i)+7y,.;L) in the ths of a recursion
relation, the path PDF is set to zero.] The equivalence of
recursion relations for a fix n(<[L/2]) as a function of L
means that the solutions for the L dependent path PDFs for a
fix n(<[L/2]) are the formally the same. Thus the coefficient
(=1)*'h(s,i;L)w,;(s,2(n—i)+y,,;L) as a function of L for
any fixed i originates from the same physical reasons (count-
ing of paths with the same length of back transitions).
Together, these three points justify the universality of the
coefficient i(s,i;L) with L for any fixed i. Technically, Eq.
(6) is derived by recasting into one equation the form of
h(s,i;L) calculated for i=1, 2, 3, for chain lengths obeying
2=<L=6. [For L=6, 7, direct counting straightforwardly
gives h(s,3 ;L):E[Lj_,-(s)Ef:_ﬁr _j(s)Eﬁgjlﬁfk(s).] Clearly, a
numerical verification of the form of the Green’s function in
Egs. (3)—(6) can be easily done for the Markovian case for
any reasonable value L, and can supply an indirect verifica-
tion of the formula for /(s,i;L). In addition, a direct verifi-

cation of the form of the A(s,i;L)’s for any i>3 can be done
analytically by constructing Eq. (10) for any fixed relevant
value of L.
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