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Resonant activation in discrete systems
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The resonant activation phenomen@AP) in a discrete system is studied using the master equation
formalism. We show that the RAP corresponds to a nonmonotonic behavior of the frequency dependent first
passage time probability density functidPDF). An analytical expression for the resonant frequency is intro-
duced, which, together with numerical results, helps understand the RAP behavior in the space spanned by the
transition rates for the case of reflecting and absorbing boundary conditions. The limited range of system
parameters for which the RAP occurs is discussed. We show that a minimum and a maximum in the mean first
passage time can be obtained when both boundaries are absorbing. Relationships to some biological systems
are suggested.
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I. INTRODUCTION II. THEORETICAL FRAMEWORK

Noise induced escape of a particle from a potential well Ve describe the escape from a system that fluctuates be-

has been a fundamental way for describing various process&¥€€n two configurations andB, using the coupled ME:
in biology, chemistry, and physics, since the seminal work of
Kramers[1]. More recently, it has been suggested that for d ﬁA(t) _(A-ly ly |5A(t)
some systems the potential itself fluctuates in time. A few P - _ - : D)
. : : T\ Pg(t) v By ARy
examples are: the transport of ions and biopolymers through
membrane channel®-4], enzymatic kinetic{5], and the  _ .
rebinding of ligand-protein complexd$,7]. The basic for- Pa(t) [Pg(t)] is an n-dimensional column vector, whoge
mulation of noise induced escape from a fluctuating environelement is the PDF to occupy sit®f the A(B) configuration
ment is obtained by making the potential term of the stochasat timet. The transition between each sjtén one configu-
tic differential equation(e.g., a white noise overdamped ration and its counterpart in the second configuration occurs
Langevin equationchange with a frequency between two  with a flipping frequencyy, see Fig. 11 is the unit matrix of
states. Doering and Gadoua showed that for a fluctuating dimensions introduced in Eql) to indicate the configu-
system, the mean first passage tite=PT)7, from a reflect- ~ rational coupling. Movement along each of the configura-
ing boundary to an absorbing boundary, may show a minifionsA andB is governed by the squaredimensional tridi-
mum as a function of [8]. The occurrence of a minimum in @gonal propagation matrices and B, respectively, whose
Hy) was termed the resonant activation phenomeiRoxP). elem_ents are the transition ratg¢sg. 1). The_z choice of_the
This has been followed by an extensive theoretical work tdﬂat”C?SA ar_1d B corresponds to an _equn(alent chmge of
understand the nature of the RA®-16], along with experi- potential profiles and boundary condlt}ons in the continuum
mental efforts to find systems displaying RA2,17. The Ease. In what folloyvs we set a reflecting bou'n.dary at pite
theoretical works have been mainly focused on checking the n, and an absorbing boundary, as a trap, atjsk@, unless
effect of different potentials on the RAP.

In this paper we study the discrete case RAP using a a
coupled master equatiofME). We show that the RAP is ] 2,1 10 |
only one of the properties that stem from the nonmonotonic AZ . A1 1 . Trap
behavior of the frequency dependent first passage times =~ | ]

(FPT) probability density functionPDF) F,(t) and which .
are related to frequency dependent minima in the first and ’Y ; ’Y
higher moments oF (). We introduce an analytical expres-

WY g

sion for the dependence of the frequency that minimize$ 2,1 110

on the system transitions rates. We show that the RAP is BZ - B" — ‘Trap
obtained only when certain conditions imposed on the tran- ,! B.' a

sition rates are fulfilled. Analyzing these conditions we come 1,2

up with an instructive understanding regarding the nature of

the RAP. In addition, an interesting behavior of the MFPT is  FIG. 1. Schematic illustration of the exit problem in a fluctuat-
obtained when changing the reflecting boundary into an abing environment for=2. For an invariant systera; o=a, ;=ay,
sorbing one: the coexistence of a minimum and a maximuna, ,=ay,, and b; g=b, 1=by, b; ,=b,. For the particular invariant
in (). birth-death systena,=0, andb;=0.
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FIG. 2. (Colon F,(t) as a function of andy on a(natura) log-log-log plot for a single-rate invariant birth-death system witiL0, and
as=bp=1. Also shown ard=,(t) projections.

otherwise indicated. Figure 1 shows a schematic illustratiotbirth-death indicates that the partidlwhen simulating Eq.
of the coupled system far=2. (1)] can move only towards its “deattithe trap when it is

The FPT PDF is defined bl ,(t)=d[1-S,(t)]/dt, where  subjected to the dynamics of tieconfiguration, and in this
S,(t) is the survival probability; namely, the probability of sense, when flipping to th®& configuration occurs it is
not reaching the sit¢=0 until timet. S,(t) is obtained by “born” (or “resurrectedy. Therefore, for the birth-death sys-
summing the elements of the vector that solves Hg, tem, the fluctuations are between a configuration which acts
Sy(t):GZHEeDtE‘lﬁzn(O). Here GZn is the summation row as a “barrier”, the birth configuration, and a configuration
vector of 21 dimensionsP,,(0) is the initial condition col- ~ 2cting as a “valley”, the death configuration. Note that a

- _ single-rate(namely, a;=by) invariant birth-death system is

umn Ve.Ctor’[PZ“(o)]j:(5X'J'PA'°+ OinPe,o), wherexiis the — giavo the system studied by Doering and Gad@8ia
initial site, and the process starts in tAgB) configuration

ith bability P« (P Unl herwi ified where the derivatives of the two linear potentials are sign
with probability Pa,o ( 3'0)' hless otherwise specified, we opposite and equal in the absolute values.
usex=n as a starting site, anly o=Pgo=1/2, assuggested

. ? . o . Figure 2 showsF.(t) for a single-rate invariant birth-
from the single configurational flipping frequency. The den'death System ano= 16 At short to intermediate times, (t)
nite negative real part eigenvalues matiix is obtained y e 4

through the similarity transformatio®=E"*HE, whereH displays a peak that shi_ft_s towards ,'?rger times Mlﬁ—his
is the matrix given on the right hand side of @), andE peak represents the exiting of the initial population of con-

andE~! are the eigenvectors matrix, and its inverseHof ~ figurationA, &, ;P o, for smally, and the overall initial con-
dition for large y. At longer times and intermediate, a

minimum inF.(t) appears as a function of that represents
[ll. RESULTS AND DISCUSSION the fastest exit mainly of the initigB population. Accord-
ingly, the minimum in the MFPTHy) is a consequence of

system. By an invariant system we mean that the transiti0|11he shape of,(t), and is therefore reflected in higher mo-

rates are independent of the site indexnamely,m;; ., ~ MeNtS ofF,(t) as well. _

=my,,, for configurationM, wheremy,, represents;, andby, To study the RAP we start by computing the MFPT. In
transition rates, and/ stands forA and B. A birth-death ~ 9eneral, the th moment of F(t) is obtained by inverting
system means that the movement in each configuration oenatrix H: 7= [Jt5F(t)dt=s! U,,(—H)™P,,(0). Using the pro-
curs only in one direction, i.ea,=b;=0. Clearly, the term jection operator techniques fét™* blocks[18], = reads

We start by computind=,(t) for an invariant birth-death
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7= 9Un(Cp + Cg)P1(0) — Uy(CaA +CgB)P,(0)/2, (2)

where C,=[AB-9(A+B)]™!, Cg=[BA-y(A+B)]%, and
[Pn(0)];=4&;. From Eq.(2) one can calculate{y) for the

limiting casesy— 0 andy—«. For y— 0, 7is the average
of the MFPT of the uncoupled configurations,and B, =

=(7a+78)/2, WhereTM:—GM‘lﬁn(O) is the MFPT of con-
figurationM. For y—x, 7is the MFPT of an averaged fully
coupled system, namely;=-U[(A+B)/2]7*P,(0). These

= : 4
are the expected limiting behaviors of the MFPT 100 o 2 a/b,
[8-12,15,1% RAP is expected for intermediate flipping fre-
quencies. FIG. 3. yminma/ by as a function ofh and the ratica;/b,. When

To obtain an analytical expression for the frequency thag/b,>3 the RAP does not exist for amy
minimizes 7(y), Ymin» We search for an extremum poia
minimum) of the function(y), for an invariant system and The special feature thai/b,< 2 is needed for RAP sug-

n=2. We find y,,,;, to be a sum of two terms: gests that the rate along the birth configuration must be, at
B least, as fast as those along the death configuration for the
Ymin= [Ymin1= 0] + [ ¥min2 = 0], (3)  RAP to be obtained. For an invariant birth-death system to

where the notations on the right hand side of B}.mean Show the RAP, the ratia/b, must fulfil a;/b,<3 asymp-

that each of the terms must be non-negative to contribute tfptically, which is demonstrated in Fig. 3. Note that Fig. 3
Ymire @Nd spans both degrees of freedom of the invariant birth-death

case, the siza, and the ratica;/b,. Scaling the timef=tby,
_ a(3bf - asby) — by(3aZ - bray,) 4 leads to dimensionless ratag by, and y/b,,
Ymin1= ag(as — 2by) — by(bs - 2a,) (4) We emphasize that even for the simple invariant birth-
death system that fulfills the demand that Breonfiguration
and rate is much larger than of configuratidnrates, the relation
. ay(b? - ayby) — by(a2 - byay) Ymin=(74) 1 might not be satisfied. To see that we calculate

L= ) 5 in for a general birth-death system and2 (see Fig.
Ymin,2 ag(a; + 20,) — by(b; + 2ap) (5) Ymin g 3% g. 2

We note that the smallest system that exhibits the RAP re- Venin = \al—i“ (7)
quires a three site system, which is a specific case of the 2 =Vay 03p,4/b; »

system shown in Fig. 1, with, for examplb; ,=b, ;— . . — o
However, in what follows we consider systems with finite which for Y?lyoazrllbl~2_’o’ reduces (0ymin=\ay,?p1/2,
transition rates. where (7,) :al,oaz,l/(a;,o+az,1)- Moreover,. when a; o
For the birth-death system E(B) reduces to >ap 1, (r/j)l‘lé 82,1, ¥min IS Unchanged, and is much larger
than (7,)”", implying that more than one configurational
I 6 change occurs at the optimal flipping frequency. Reverse
Ymin= 5 —alby’ © substitution y= i, and y=(7x)* into A(y) results in7(y
. . o = Ymin) = 2/8,1 and 7(y=ymin)/ y=(72)"1]=0.8. Note that
The s:tmﬁle form of Eqmzj prolv|des f‘n '”ﬁ'ght into the  for hoth values ofy, (y) is independent ob; , to be com-
nature of the RAP. It immediately implies the requirement ; -~ '
> " -1 pared witho(y—o)=b; ,/(a; 03,1). Ymin has, therefore, a
af/.bb<2 fpr RAP to occur. FOb,>ay, ymin=(7a)"", where general functional form that not necessarily coincides with
7a is the first moments=1, of F(t) for a death systemzy o MEPT of the faster configuration.
7 S ~ : ;
=(n)s/at, where(n)s=(n+s-1)!/(n-1)\. This optimal fre- Going beyond the birth-death system, we first consider a
quency means thad ;P has exited the interval, on aver- case for whichB=\A. From Egs.(3)(5) we have, forn
age, while the first configurational transition occurred, and=o ymin<O for any positivex. From numerical calculation
the same holds foB, Pg 0, for the second configurational \ye find that forn>2 there is no real positivey,, Both the
transition. Because the probabilitparticleg can exit the  apalytical and the numerical results imply that a system for
interval only when it is subject to th& configuration dynam-  \yhich A andB commute does not exhibit the RAP.
ics, a situation where th& configuration is empty but not the The next case to be checked for the occurrence of the
B configuration, means a f‘wgste" of time with regards tORAPp is obtained by setting;=b,=k. UsingT=kt, the system
fastest interval exiting. This is the case for ymin FOr  yransition rates are dimensionless, measured in units. of

Y= Ymin n_ot all &y PA_,Q exited the interval, .while the first This procedure leads to the reduced Efsand (5):
configurational transition occurred, meaning that another

cycle of flipping is required to exit the system. This leads v 3+u]-3v-1

again to a waste of time with regards of fastest interval ex- Ymin 1/ K= W (8)
iting. At y=(7,)"%, only one configurational change occurs,

and costs the minimal time for exiting the interval. and
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B=A. Foru>1 andv <1, y,,/k has two asymptotic lines,
which define a resonant-free region. This happens wiBien
~MNA. Foru>v>1, ynin/k~v/2. These two features are
demonstrated in Fig.(d).

The above analysis is of importance since the coupled ME
with n=2 can be used to model the kinetics of a conforma-
tionally changing enzyme. Such extended Michaelis-Menten
models are appropriate for describing experiments performed
on a single molecule levdb]. If we assume that there are
two enzyme conformations, a specific stage of the enzymatic
activity can be described by Fig. 1. From E@g8) and (9),
and more generally Eq$4) and (5), a relationship between
the reaction rates and the conformational flipping frequency
can be established for an optimal enzymatic activity. In ad-
dition, changes in the flipping rate value near the resonant
0 05 1 frequency, which can be achieved, for example, by binding

v v of other molecules to the enzyme, provide a simple and ef-
ficient mechanism for regulating the enzymatic activity,
which is a well known issue in biologj19].

Finally, we study a system for which both ends are ab-
sorbing; namely, the reflecting boundary is replaced by an
absorbing one, and the escape process starts at the middle

k= vl+ul-v-1 9) site(n=7 andx=4). The coupled invariant configurations are
Ymin28= "3 -v[2u+v] taken to have an opposite bias, i. e. the transition rates of the
B configuration ardy;=0.175,b,=1, which give rise to a left
whereu=a,/k andv=Db;/k. Figure 4a) showsy,i,/k as a side bias as defined in Fig. 1, whereas in gheonfiguration
function of v for u=1/2. yy,n1/k displays a maximum at a;=3.5 anda,<a; give rise to a right side bias. A global
Umax Which is easily recovered from E@8). For v <uvpay minimum and a global maximum if(y)/ «(y— o) can occur
¥Ymin1/ K increases, which reflects the increase in the relativgFig. b)]. The minimum and maximum appear at the neigh-
ability of the B configuration to “help” the fastest exiting of borhood of the point3,i,7s=1 and y,.7a=1, respectively.
configurationA. On the other hand, the decreaseyif,;/k  This behavior is sensitive to the value &f [Fig. 5@&)]. For
for v =v,, iImplies that theB configuration movement to- a,— 0 the global extremum points reduce to local extremum
wards the absorbing end becomes fast enough “to stand goints. Whena,— a;, 7(y)/ 7(y— =) is a monotonically in-
its own” for the accomplishment of this task. A resonant-freecreasing function ofyr, to its asymptotic limit of 1.
zone occurs in the region wherg= 75, and is followed by a We note that these boundary conditions for a fluctuating
short resonant region, where both configurations are trap orsystem have been used to describe the translocation of a
ented, namelyu<1 andv >1. Figure 4b) shows that in the single stranded DNA through a conformationally changing
range Gsu<1 yyin1/K is nonmonotonic. Figure(d) shows  nanoporg4]. For this case no resonance occurred because of
for u=1 the only nonzeroyy,1/k>0 which diverges as the physical conditions that imposed the relatiBr\A.
1/(1-v) whenv—1, because for these system parametersiowever, for systems that are described by matricendB

b

u=1/2

100

OO
-
N

FIG. 4. (8) ymin/k for a;=b,=k andu=1/2, as aunction ofuv.
(b) Ymina/k as a function of 6su,v<1. () ymin/k for u=1 as a
function ofv. (d) ymin/k for u=5 as a function ob.

log[/z(y=co]]

CI’ 5 0 5
og(yt,) log(yr,)

FIG. 5. (Color) (a) A (natura) log-log-log plot of 7(y)/ «(y— ) as a function ofa, and y7, for two absorbing ends in an invariant
system, witha;=3.5, b;=0.175,b,=1, n=7, andx=4. (b) Profile of the left figure fora,=0.25 exposes a global minimum and a global
maximum in(y)/ 7(y— ).
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that do not commute and for two absorbing ends, a change iwhich is a nonmonotonic behavior & (t) along the fre-

v in the vicinity of the extremal points, leads to a drasticquency axis for large time. We characterized the conditions
change in the average time during which the system is occtfor which an invariant birth-death system exhibits the RAP,
pied, and, therefore, emphasizes the importance of the freand broaden these conditions by examining more general

quency of fluctuation as a control parameter. systems. Relationship between the RAP and biological activ-
ity was suggested. In addition, we introduced an interesting
IV. CONCLUSIONS property of the MFPT, the coexistence of a minimum and a

o L ‘maximum in the flipping frequency dependent MFR{ly).
To conclude, in this paper we revisited the resonant acti-

vation phenomenon. We studied the origin of the RAP and

the requirements under Wh|ch.th|s phenpmenon can be ob- ACKNOWLEDGMENT

served. We showed that for a single-rate invariant birth-death

system the RAP is a consequence of a general phenomenon, We thank Attila Szabo for fruitful discussions.

[1] H. A. Kramers, PhysicdAmsterdam 7, 284 (1940. [12] M. Bogufia, J. M. Porra, J. Masoliver, and K. Lindenberg,
[2] M. M. Millonas and D. A. Hanck, Phys. Rev. Let80, 401 Phys. Rev. E57, 3990(1998.

(1998. [13] P. Reimann, R. Bartussek, and P. Hanggi, Chem. PR§5,. 11
[3] M. Bates, M. Burns, and A. Meller Biophys. B4, 2366 (19989.

(2003. [14] O. Benichou, B. Gaveau, and M. Moreau, Phys. Revo%

[4] O. Flomenbom and J. KlafterBiophys. @ be published
[5] G. K. Schenter, H. P. Lu, and X. S. Xie, J. Phys. Chenl@g,
10477(1999.

103(1999.
[15] M. Marchi, F. Marchesoni, L. Gammaitoni, E. Menichella-
[6] R. Zwanzig, J. Chem. Phy€7, 3587(1993. Saetta, and S. Santucci, Phys. ReVvb& 3479(1996.

[7] N. Eizenberg and J. Klafter, J. Chem. Phy€4, 6796(199¢.  [161 A. Bar-Haim and J. Klafter, Phys. Rev. &0, 2554(1999.
[8] C. R. Doering and J. C. Gadoua, Phys. Rev. Léd, 2318  [171 R. N. Mantegna and B. Spagnolo, Phys. Rev. L&d, 3025

(1992. (2000.
[9] C. Van den Broeck, Phys. Rev. &7, 4579(1993. [18] R. Zwanzig, Nonequilibrium Statistical MechanicgOxford
[10] U. Ziircher and C. R. Doering, Phys. Rev.4Z, 3862(1993. University Press, New York, NY, 2001
[11] M. Bier and R. D. Astumian, Phys. Rev. Left1, 1649(1993); [19] B. Alberts, K. Roberts, D. Bray, J. Lewis, M. Raff, and J. D.
M. Bier, I. Derényi, M. Kostur, and R. D. Astumian, Phys. Watson,Molecular Biology of The Cel{Garland, New York,
Rev. E 59, 6422(1999. 1994

051109-5



