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Single-molecule techniques offer a unique tool for studying the
dynamical behavior of individual molecules and provide the pos-
sibility to construct distributions from individual events rather than
from a signal stemming from an ensemble of molecules. In bio-
logical systems, known for their complexity, these techniques
make it possible to gain insights into the detailed spectrum of
molecular conformational changes and activities. Here, we report
on the direct observation of a single lipase-catalyzed reaction for
extended periods of time (hours), by using confocal fluorescence
microscopy. When adding a profluorescent substrate, the moni-
tored enzymatic activity appears as a trajectory of ‘‘on-state’’ and
‘‘off-state’’ events. The waiting time probability density function
of the off state and the state-correlation function fit stretched
exponentials, independent of the substrate concentration in a
certain range. The data analysis unravels oscillations in the loga-
rithmic derivative of the off-state waiting time probability density
function and correlations between off-state events. These findings
imply that the fluctuating enzyme model, which involves a spec-
trum of enzymatic conformations that interconvert on the time
scale of the catalytic activity, best describes the observed enzy-
matic activity. Based on this model, values for the coupling and
reaction rates are extracted.

single enzyme activity � two-state trajectories

Dynamics of chemical reactions are conventionally investi-
gated by ensemble measurements. Recent advances in

single-molecule spectroscopy have enabled the real-time study
of biophysical processes (1–10) and conformational changes
(11, 12) of single biomolecules. These studies have demon-
strated that new information about such processes can be
extracted from single-molecule measurements. In particular,
deviations from the standard Michaelis–Menten behavior (13,
14), which is expected for bulk enzymatic activity, have been
observed (6–8, 12).

Motivated by these findings, we examined the enzymatic
activity of individual molecules of the 33-kDa lipase B from
Candida antarctica molecules (15, 16) by using confocal f luo-
rescence microscopy. This lipase catalyzes the hydrolysis of
esters in aqueous solution following the same reaction mecha-
nism as that of a serine protease (17). To study the catalysis by
single lipase, we used a fluorogenic substrate, namely the
nonf luorescent ester 2�,7�-bis-(2-carboxyethyl)-5-(and-6)-
carboxyfluorescein acetoxymethyl ester, which upon hydrolysis
forms a highly fluorescent carboxylic acid product (18, 19). This
method enabled us to probe the enzymatic activity by monitoring
the fluorescence emission from single enzymes. The fluores-
cence emission displayed blinking of ‘‘on’’ and ‘‘off’’ events
depending on the presence (or absence) of the fluorescent
product in the confocal focus (20). By using this approach, we
have been able to obtain long trajectories (for time periods of
hours) suitable for reliable statistical analysis while varying the

concentration of the substrate, thus allowing the study of the
effect of changing the substrate concentration on the observed
trajectories.

Our analysis demonstrates that the waiting time probability
density function (PDF) of the nonfluorescent (off) state follows
a stretched exponential with the same fitting parameters for a
certain range of substrate concentrations. The highly nonexpo-
nential stretched behavior that is also evident in the state-
correlation function is interpreted as a manifestation of a
spectrum of active enzymatic conformations, which is supported
by the oscillations in the logarithmic derivative of the off waiting
time PDF. By performing previously undescribed methods of
analyses on the data, we obtained information that is used to
build a microscopic kinetic model most suitable to account for
the experimental findings, namely the f luctuating enzyme
model. Within the model, which involves both conformational
changes and enzymatic activity, we were able to extract average
values for the fast conformational f luctuations and reaction
rates.

Single Enzyme Measurements
We start with a brief overview of the experimental setup. A full
description is given in ref. 20. Individual lipase B molecules from
Candida antarctica were nonspecifically labeled with Alexa Fluor
488 dye molecules (21, 22) and immobilized onto a surface
derivatized with dichloro-dimethyl silane by using a hydrophobic
glass. A laser-scanning stage confocal microscope was used to
detect the lipase molecules. Focusing the laser on a single
molecule, we used the attached dye fluorophores to zoom in on
an enzyme molecule. The dye was then photobleached before the
addition of the substrate. The recorded fluorescence emission
showed a blinking (on�off) behavior, which was attributed to the
enzymatic turnover cycle (ETOC). Several control measure-
ments were performed to verify this conclusion (e.g., a signal was
recorded from a system that contains enzyme in the absence of
substrate and vice versa; see also ref. 20).

To analyze the recorded trajectories of the photon counts
(Figs. 1 A–C), the ETOC was viewed as a two-state process. The
two distinct states are naturally defined by the absence (off state)
and the presence (on state) of fluorescence emission. Note that
the two-state picture is not an assumption but a consequence of
the way the experiments were designed (20). The two-state
ETOC dynamics is basically described by the waiting time PDFs
of the off state, �off(t), and of the on state, �on(t). Namely,
�off(t)dt[�on(t)dt] is the probability that a given off (on) event
along the trajectory lasts between t and t � dt. In principle, these
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functions do not fully describe the process (O.F., J.K., and A.
Szabo, unpublished data). However, they do give its basic
characteristics, primarily the number of substates in each of the
states of the kinetic scheme. Based on our findings, we suggest
below a kinetic scheme for the enzymatic activity.

To get �off(t) and �on(t), the photon count trajectory [a(t)]t�0
X

(Fig. 1 A–C), where a(t) is a random photon count value at time
t � i�t (�t � 1 ms) and X is the measurement time (length of the
trajectory), is transformed into a two-state (digital) trajectory.
This transformation should be performed by applying on the
trajectory a threshold photon count value a*. Namely, by using
a*, the two states composing the trajectory were separated, so
that each a(t) was attributed either to an off state, aoff(t) for
a(t) � a*, or an on state, aon(t) for a(t) � a*. To estimate a*, we
constructed the stationary histogram of the recorded photon
counts P(a) (Fig. 1D). P(a) was composed of two contributions,
a peaked off-state noise part and a monotonically decaying
on-state part. The noise off-state part of P(a) was fitted with a
Poisson PDF (although a Gaussian PDF fits equally well this
part). The noise off-state part did not provide any information
about the enzymatic process because it originates from back-
ground processes. The on-state part of P(a) was fitted by an
exponential decay. This part did supply information about the
enzymatic activity because it reflected the escape of the ‘‘newly
formed’’ f luorescent product molecule from the enzyme and its
vicinity. For example, the combination of an exponential on-
state waiting time PDF and a Poissonian photon statistics leads
to an exponential decay photon counts per bin for a wide range
of parameters (O.F. and J.K., unpublished data). In this sense,
P(a) shape supports the two-state picture. Now, the intersection
between the two fitting functions of the two parts of P(a) can
provide estimation for a* (Fig. 1D). However, another compli-
cation prevents such a straightforward use of a*. This compli-
cation is the increase in the noise level as the reaction progresses,
which is attributed to the accumulation of the product molecules.
To handle this issue, we performed a separate local treatment on
the photon count trajectory to transform it into a digital
trajectory. The photon count trajectory was divided into L
intervals of duration J � X�L � 1 s. In each { j}j�1

L interval, the
average �aj�off and standard deviation � j � ��aj

2�off � �aj�off
2

of the off-state photon counts were calculated by using first

a*1 � a*. Defining �j � a*j 	 �aj�off and �j � �j��j , iterations were
performed in each j interval until the local threshold a*j was such
that the inequality �1 	 �j � �j � �1 � �j was fulfilled. �1 was
chosen as a reference value because it defines a zero product
trajectory accumulation. We note that a*1 was chosen to be
smaller than the intersection value because P(a) already contains
contribution from the product accumulation. For example, to
transform the trajectory shown in Fig. 1 A–C into a digital
trajectory, we used several values for a*1, a*1 � 15,16,17, in the
algorithm presented above. All three values for a*1 led to digital
trajectories with the same statistical properties.

By using the above algorithm, we fixed the difference between the
average of the off photon counts and the threshold value along the
trajectory within some small fluctuations window, whose width was
set by the local features of the j interval. This algorithm resulted in
a shift (on average) of the threshold to higher values as the reaction
progressed (Fig. 1E) (j increased) while taking into account the
basic characteristics of the noise part of P(a). Shown in Fig. 1 F and
G are �aj�off 
 �j and �j, respectively.

When applying this method, the photon count trajectory is
translated into a digital trajectory whose statistical properties can be
analyzed. We stress that the threshold value method used here
provides reliable results for �off(t) and �on(t) for a fairly wide range
of photon count parameters (O.F. and J.K., unpublished data).

Statistical Analysis of the Digital Trajectory
The digital trajectory is characterized by the random process
{�(t)}

t � 0

X � 0, 1, made of on, � � 1, and off, � � 0, values. �off(t)
and �on(t) can be constructed by building a histogram from the
time durations of the corresponding events along the trajectory.
Fig. 2A shows �off(t) on a ln-linear scale for a set of three
different substrate concentrations, [S] � 0.6, 0.9, and 1.4 	M,
demonstrating that the relaxation patterns are nonexponential.
All of the three curves correspond to the kinetic behavior of the
same lipase molecule, obtained by the sequential addition of
substrate while monitoring the enzymatic activity for �30 min
for each [S]. The best fit for these curves is found to be a
normalized stretched exponential function (23),

�off� t � �0e	�t�
�; �0 � 1� �
0

�

e	�t�
�dt �
��


��1��
,

[1]

Fig. 1. The photon count trajectory and its analysis. (A) A photon count trajectory as a function of time (�t � 1 ms) of a single lipase B from Candida antarctica
during catalysis. (B and C) Zooming into segments of the trajectory in A. A local threshold value is shown in C. (D) A ln-linear histogram of P(a) (black curve). The
arrow indicates the threshold value, a*. Also shown are the fitting functions for the two parts of P(a) (red curves). (E) The floating threshold a*j as a function of
time measured in bins of 1s (J � 1s). (F and G) �aj�off 
 �j, the black sign corresponds to �aj�off, and the blue sign corresponds to 
�j, as a function of t with J �
1 s (F), and the corresponding �j (G). In all figures, [S] � 1.4 	M.
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where �(�) is the gamma function (24), and the value of the
normalization factor, �0, is valid when assuming that the stretched
behavior characterizes the process for all times (namely, for t3 �).
The stretching exponent � and the parameter 
 are independent of
[S] within the investigated range, � � 0.15 and 
 � 1.15 	s (see Fig.
2 B–D). Note that the pair � and 
, rather than each of these
parameters alone, is the relevant quantity, which can be seen when
calculating, for example, the average off-state duration time: �toff� �
�0

� t�off(t)dt � 
�(2��)��(1��).
To check the insensitivity of the �off(t) shape to the substrate

concentration for values �0.6 	M, we plotted the number of
ETOCs per 20 min as a function of [S]. As shown in Fig. 3A, we
observed a saturation profile for this quantity, which reaches its
plateau at [S] � 0.6 	M. This observation supports the argument
that the stretched exponential decay pattern does not originate,
for these concentrations, from anomalous diffusion of the sub-
strate to the enzyme vicinity but reflects an intrinsic feature of
the enzymatic activity.

Information about the ETOC mechanism can be obtained by
a closer examination of the behavior of �off(t). We gained insight
into the origin of the stretched exponential off-state behavior by
plotting the logarithmic derivative of �off(t), G[�off(t)] �

� ln[�off(t)]��ln(t). Fig. 3B shows that G[�off(t)] displays oscil-
lations when plotted against ln(t). In principle, such behavior
implies that the observed process consists of a spectrum of
simple events, each contributing an exponential factor to the
overall decay process, where the time scales of these exponentials
exhibit some scaling (25). Here, we cautiously interpret the
oscillations in G[�off(t)] as an indication that the off state
consists of a sum of exponential terms (parameter extraction
would be too speculative in our case).

The waiting-time PDF of the on state, �on(t), displays a fast
decay spanning only a few milliseconds, independent of [S] (data
not shown). Being [S]-independent is the expected behavior, as
each on event is terminated when the product diffuses away from
the enzyme vicinity, a process that should indeed be [S]-
independent. We approximate �on(t) by �on(t) � e	t with 	1

� 1 ms. Deviations from exponential decay are possible, but the
fast decay (	1 � �t) prevents a more accurate fitting.

In addition to the calculations of the waiting-time PDFs of the
two states, one can compute directly from the experimental
trajectory the state-correlation function, C(t) � ���(t)��(0)��
���2�, where ��(t) � �(t) 	 ���. This function is the bulk
relaxation function (O.F., J.K., and A. Szabo, unpublished data).
The decay pattern of C(t) is also a stretched exponential over
three time decades, C(t) � e	(t�
̃)�

, with � � 0.085 and 
̃ � 0.356
	s (Fig. 4A). Now, the state-correlation function obtained
directly from the experimental trajectory can be confronted with
a theoretical state-correlation function for a two-state semi-
Markov (TSSM) process. The Laplace transform (g�(s) �
�0

� g(t)e	stdt) of C(t) for a TSSM process with arbitrary waiting
time PDFs is known (26–28),

C� �s �
1
s�1 �

N
s

�1 � �� on�s��1 � �� off�s�

1 � �� on�s�� off�s
�;

N � ��toff� � � ton��� toff�� ton� .
[2]

The theoretical TSSM C(t) can be calculated by inverting Eq. 2 with
the Laplace transform of the experimental �off(t) and �on(t). This
function is shown in Fig. 4B by numerically inverting Eq. 2 (using
the algorithm by K. J. Hollenbeck called INVLAP.M, 1998). The
theoretical TSSM C(t) displays a stretched exponential decay
pattern with an exponent � � 0.0876 and 
̃ � 0.141 ns. The
discrepancy at the short time regime of the two state-correlation
functions might be related to the estimation of �on(t). The different

̃ values, however, indicate that the system is not fully described as
a TSSM process, which means that there are correlations between
successive events (O.F., J.K., and A. Szabo, unpublished data).
Indeed, we show below that such correlations exist, by considering
a different trajectory that displays the chronologically ordered time
duration of the off-state events (Fig. 5A). On this trajectory, the
height of the ith line corresponds to the time duration of the ith off

Fig. 2. The off-state waiting time PDFs. (A) A ln-linear scale plot of the
off-state waiting time PDF emphasizes its nonexponential relaxation pattern.
(B–D) �off(t) for a set of three different substrate concentrations [S] � 0.6, 0.9,
and 1.4 	M, shown in B, C, and D, respectively. Also shown are the corre-
sponding fitting functions. Here f[�off(t)] � 	ln{	ln[�off(t)]} is plotted vs. ln(t),
where the slope corresponds to the exponent 	�, the stretching exponent.
For all curves the normalization used was such that �off(t � 0) � 1, chosen for
a convenient parameters extraction.

Fig. 3. The stretched behavior from many subprocesses, which are [S]-
independent. (A) A plot of the number of ETOCs during a period of 20 min, as
a function of the substrate concentration [S]. The plot reveals a saturation
profile similar to that observed for enzymes in solution. Saturation is reached
at �0.6 	M. The red curve is drawn to guide the eye. (B) The logarithmic
derivative (natural log) of �off(t), G[�off(t)], for [S] � 1.4 	M displays oscilla-
tions, which implies a multiexponential off-state process.

Fig. 4. The state–correlation functions. (A and B) Both the experimental (A)
and theoretical (B) autocorrelation function C(t) display a stretched exponen-
tial decay pattern [f(�) is defined in Fig. 2], with similar stretching exponent
values but different 
̃ values. See text for discussion.
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event, where the events appear in the same order of their occur-
rence in the original time-series. A nontrivial correlation function
calculated from this trajectory, which was used in ref. 6, and treated
theoretically in O.F., J.K., and A. Szabo (unpublished data) and in
refs. 29–31, serves, in principle, as an indication for conformational
changes. In our case, the second point of such correlation function,
which measures the correlation between successive events, R(1) �
[�toff,1toff,2� 	 �toff�2]�[�toff

2 � 	 �toff�2], has a value of R(1) � 0.35.
However, it is difficult to relate this quantity to the details of a
kinetic scheme (see below). Nevertheless, by using an alternative
analysis method of the ordered off waiting times trajectory, we
extract more precise information about the ETOC mechanism.

Observing the ordered off waiting times trajectory, we noticed
local trends (for all three concentrations) where events of similar
short durations followed each other. Namely, along this trajec-
tory fast events (each event is faster than 35 ms) were clustered
together, with an average of 3.5 (
1.1) events per group and an
average duration time of 10 (
2) ms per event in the group.
Binning the times of the fast successive events in each group, we
obtained a set of random variables from which we constructed
a histogram denoted by Wft(t) (Fig. 5B). This histogram should
be interpreted in view of a kinetic model. When considering our
findings, the most natural choice for a kinetic model is the
fluctuating enzyme model (Fig. 6A). With this model in mind,

Wft(t) estimates the PDF to occupy a fast conformation (or
conformations) for an overall duration t, in which several on�off
cycles can occur, before conformational changes to a slow
conformation is taking place.

Modeling
Consider a Michaelis–Menten type of model of a three-stage
reaction mechanism (13),

�E � S7 ES3 �off�EP 3 E � P�on.

The symbols E, S, and P stand for the enzyme, substrate, and
product molecules, respectively, and the symbols ES and EP stand
for the enzyme–substrate and enzyme–product complexes, respec-
tively. In this model, the first two stages, which are the formation
of the complex ES and the transformation of the substrate into
product, constitute the off state. The third stage, which is the escape
of the product away from the enzyme and its vicinity, constitutes the
on state. The off waiting time PDF for this model does not lead to
a stretched exponential waiting time PDF. In particular, given a
high enough substrate concentration, the expression for �off(t) is
simply a biexponential [the expression for �on(t) is a single expo-
nential]. Thus, the observed trajectory requires going beyond the
Michaelis–Menten type of description. As known from other
systems (23, 25, 32, 33), a stretched exponential decaying pattern
can arise from contributions of a large number of weighted expo-
nentials. In the present case, the stretched exponential decay
pattern of �off(t) serves as an indication that the system exhibits
dynamic disorder. In other words, the �off(t) form, which is [S]-
independent over some concentration range, indicates that a spec-
trum of enzymatic conformations is involved in the catalytic
activity. Any suggested model should incorporate this feature.

We therefore consider a model that involves simultaneously
enzymatic activity and conformational changes. The model
describes an off state that consists of a broad spectrum of
conformational substates, with nearest neighbors connectivity
(Fig. 6A). The dynamics of the conformational changes are
governed by the coupling rates �m
1m, where �m
1m is the
coupling rate from conformation m to m 
 1. Each of these
conformations is active and can react with a reaction rate km for
substate m. This picture is consistent with experiments that
probe conformational changes in proteins and report on finger-
prints of a large number of conformations (11). While confor-
mational f luctuations take place, the enzyme–substrate complex
is formed, where similar to the experimental conditions [S] is
large enough to have always a substrate molecule in the vicinity
of the enzyme; namely, [S] does not play a role in the dynamics
of the off stage. Once the enzyme–substrate complex is formed
the enzyme can react, transforming the substrate into a product,
which terminates the off state. If we assume that the transfor-
mation of the substrate into a product is a fast process relative
to the formation of the complex itself or its dissociation, then the
appropriate kinetic scheme that underlies the studied enzymatic
activity is the fluctuating enzyme model shown in Fig. 6A, where
rate km can be still defined as a reaction rate of the enzymatic
activity. The information extracted from the off ordered waiting
times trajectory (the average number of successive fast events
and the average time duration of a fast event) can be related to
the average reaction rate of the fast conformations, �k�fast � (8
ms)	1, and the average fluctuation rate from slow to fast
conformations, ���fast3slow � (45 ms)	1 (O.F., J.K., and A. Szabo,
unpublished data).

The on-state time durations start when the product is formed
and last until it escapes from the enzyme and its vicinity. If the
formation of the product took place from conformation m in the
off state, the escape process occurs with a reaction rate rm, where
we require rm �  for an exponential �on(t). We assume that
conformational changes in the on state do not occur during

Fig. 5. The ordered off waiting times trajectory. (A) The trajectory of the
time durations of the off-state events as a function of chronological event
index for [S] � 1.4 	M. Noticeable along this trajectory are groups of successive
fast events (each event in the group has a 
off value of �35 ms). (B) The
histogram of the time durations of the groups of successive fast events, Wft(t).
Wft(t) estimates the PDF to occupy a fast conformation (or conformations) for
a time duration t before conformational changes occur.

Fig. 6. The fluctuating enzyme model and the generalized density of rates.
(A) A schematic model of the enzymatic process. The off state consists of a
spectrum of N-coupled substates. Also indicated are the coupling rates be-
tween the conformations and the enzymatic reaction rates. (B) �̃off(k) for a
stretched exponential �off(t) with � � 0.15 and 
 � 1.15 	s, blue curve, and
with � � 0.15 and 
 � 2.3 	s, black curve.
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occupying the on state, or, alternatively, the coupling rate values
are small compared with  (which is in fact the case if we consider
���fast3slow as an estimation of the fluctuating rate in the on state
as well).

To relate �off(t) to the fluctuating enzyme model, we write the
expression for �off(t) as, �off(t) � A�m�me	�mt, where A is a
normalization constant, the sum is taken over all possible
substates, and �m and �m are the weights and relaxation rates,
respectively. Because of the coupling between the off substates,
the dependence of �m and �m on m involves all of the �m
1m’s
and the km’s. The continuum representation of �off(t) for a large
number of substates is given by

�off� t � �
0

�

�̃off��e	�td� ; �̃off�� � A������ ,

[3]

where we introduce the density of rates, �(�). Hence, �̃off(�) is
the inverse Laplace transform of �off(t) (34, 35) and serves as a
generalized density of rates. Fig. 6B shows the broad monope-
aked �̃off(�) obtained by numerically inverting the stretched
exponential �off(t), with � � 0.15 and 
 � 1.15 	s, blue curve,
and � � 0.15 and 
 � 2.3 	s, black curve. Both curves display
a power law asymptotic decay pattern, �̃off(�) � �	1	�, which is
obtained by using the Tauberian theorem (36) for large enough
� values. In a recent article (12), a peaked distribution of reaction
rates was extracted from single T4 Lysozyme TOC trajectories
(�50), lasting �20 s. In our studies, each of the trajectories was
long-lasting (�30 min) and consisted of contributions from the
entire distribution, which leads to the nonexponential decay
pattern of �off(t).

Concluding Remarks
Nonexponential behavior of biomolecules has been obtained in
several systems (11, 32, 33). Here, we report on a direct
observation on the single-molecule level of a stretched expo-

nential off waiting time PDF in the enzymatic catalytic activity
of lipase B from Candida antarctica, �off(t) � e	(t�
)0.15

(
 � 1 	s).
Searching for the origin of the stretched behavior, we ruled out
the possibility of an external source such as the substrate
concentration. The oscillations in the function G[�off(t)] forced
us to the conclusion that the off process is composed of a large
number of subprocesses, which we interpreted as a spectrum of
conformations, each of which contributes an exponential factor
to the overall decay process. By confronting the experimental
state-correlation function, C(t), with a theoretical state-
correlation function for a TSSM process with the experimental
�on(t) and �off(t), we concluded from the different behavior of
these functions [in both cases C(t) � e	(t�
̃)�

with similar � values
(�0.085) but with 3 orders of magnitude difference in the values
of 
̃] that the underlying mechanism cannot be described as a
TSSM process and that correlations between events exist. In-
deed, the trajectory of the off time durations exhibited local
trends of bunched fast events. We were, thus, led to describe the
observed enzymatic activity by the fluctuating enzyme model
(Fig. 6A). In light of this model, average values for the coupling
and reaction rates were estimated, ���fast3slow � (45 ms)	1 and
�k�fast � (8 ms)	1, respectively.

The analysis presented here is related to two basic questions
in the context of two-state single-molecule trajectories: (i) what
is the maximal amount of information that can be extracted from
two-state trajectories about the underlying kinetic schemes; and
(ii) how should the information be extracted? The case of single
lipase molecules provided an example for dealing with these
questions. A detailed theoretical treatment of what can be learnt
from two-state single molecule trajectories will be published
elsewhere (O.F., J.K., and A. Szabo, unpublished work).
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