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Closed-Form Solutions for Continuous Time Random Walks on Finite Chains
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Continuous time random walks (CTRWs) on finite arbitrarily inhomogeneous chains are studied. By
introducing a technique of counting all possible trajectories, we derive closed-form solutions in Laplace
space for the Green’s function (propagator) and for the first passage time probability density function
(PDF) for nearest neighbor CTRWs in terms of the input waiting time PDFs. These solutions are also the
Laplace space solutions of the generalized master equation. Moreover, based on our counting technique,
we introduce the adaptor function for expressing higher order propagators (joint PDFs of time-position
variables) for CTRWs in terms of Green’s functions. Using the derived formula, an escape problem from a
biased chain is considered.
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FIG. 1. (a) Part of an l-state semi-Markov chain with nearest
neighbor transitions and trapping. The dynamics are governed by
the directional waiting time PDFs,  n�ln�t� � !n�ln’n�ln�t� and
 Nn�t� � !Nn’Nn�t�. A way to simulate such a system is to first
draw a random number out of a uniform distribution, which
determines the direction according to the transition probabilities.
Once the direction is set, say, from state n to state j, a time is
drawn out of ’jn�t�, randomly and independently. This Gillespie
kind of algorithm produces an uncorrelated waiting time l-state
trajectory. (b) Part of a stochastic trajectory, generated from the
algorithm above, with l � 3, !21 � !23 � 1, !12 � !32 �
1=2, and ’jn � 2te	t. t0	 and t0� are, respectively, the back-
ward and forward recurrence times when occupying state 2 at
time t0 and the next transition is to state 1. We call the corre-
sponding waiting time a ‘‘junction waiting time.’’
One-dimensional stochastic processes [1–18] are widely
used to describe dynamics in biological, chemical, and
physical systems [19–33]. Quite ubiquitous among these
are nearest neighbor hopping processes on finite discrete
lattices (chains). Yet, closed-form solutions for the dynam-
ics along arbitrarily inhomogeneous chains have been
missing. To fill this gap, we consider here a continuous
time random walk (CTRW) on a chain of l distinct states
governed by state- and direction-dependent waiting time
probability density functions (PDFs):  n�ln�t� �
!n�ln’n�ln�t� for transitions between state n to state n�
1, and  Nn�t� � !Nn’Nn�t� (N � l� n) for irreversible
trapping from state n, with the normalization conditionsR
1
0 ’jn�t�dt � 1, 8 n, j � n� 1, N, and �j!jn � 1, 8 n

[Fig. 1(a)]. CTRWs with direction-independent exponen-
tial waiting time PDFs are Markovian, and those with
nonexponential or direction-dependent waiting time
PDFs are semi-Markovian [1–3,14] (see comment below).
One can get semi-Markovian processes from Markovian
ones by considering branched Markovian processes, where
the states along a branch have the same observable value as
the backbone state they have originated from [6], or by
averaging over disorder [9].

The dynamics of the CTRW considered here is pre-
sented by a stochastic trajectory of l distinct states
[Fig. 1(b)] with the renewal property of having no corre-
lations between waiting times [1–3,14]. This property
relies on two factors: (i) the waiting times are drawn
from the ’jn�t� randomly and independently of the global
time and of the past transitions [1–3,14], and (ii) each state
has a distinct observable value [14]. Semi-Markovian pro-
cesses generate uncorrelated nonexponential waiting time
trajectories [2,14]. Trajectories similar to those shown in
Fig. 1(b) are obtained, for instance, from single molecule
measurements [14–32], thus allowing the construction of
the waiting time PDFs directly from the trajectory. In many
cases, the trajectories consist of two observable states [14–
18,20,21,25–27,29–32]. In some of these examples
[14,29,30(a),31], correlations between waiting times are
05=95(9)=098105(4)$23.00 09810
observed. This nonrenewal property of the trajectory can
appear when assigning the same observable value for
different states of the underlying multistate chain in a
specific way [14]. Here we are interested in renewal pro-
cesses, although, for some cases, the statistical properties
of nonrenewal ones can also be constructed from the
results given in this Letter. The Green’s function Gnm�t�,
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which is the PDF to occupy state n at time t when starting
from state m at time 0 and �n;m� 2 1; . . . ; l, obeys for
semi-Markovian processes with nearest neighbor transi-
tions the integro-differential generalized master equation
(GME),

@Gnm�t�=@t � 	
Z t

0
�Kn�ln�t	 t0� � Kn	ln�t	 t0�

� KNn�t	 t0�Gnm�t
0�dt0

�
Z t

0
Knn	1�t	 t0�Gn	1m�t

0�dt0

�
Z t

0
Knn�1�t	 t0�Gn�1m�t

0�dt0;

n � 1; . . . ; l; (1)

with K10�t� � Kll�1�t� � 0, and a delta initial condition
(t! 0), Gnm�t� � �nm��t�. Here, Kjn�t� is the so-called
memory kernel from state n to state j, and KNn�t� is the
trapping kernel of state n. The relationship between the
kernels and the waiting time PDFs is given in Laplace
space [ 	g�s� �

R
1
0 g�t�e

stdt] by [9,10,22], 	Kjn�s� �
	 jn�s�= 	
n�s�, where 	
n�s� � �1	 �i

	 in�s�=s. Two spe-
cial cases of the GME are obtained for (a) exponential and
direction-independent ’jn�t�,  jn�t� � ajne	nt (ajn is the
transition rate from state n to state j, and n � �jajn), and
(b) power law and state- and direction-independent ’jn�t�,
 jn�t� � ajnt

	1	�; 0<�< 1. For case (a), Eq. (1) reduces
to the master equation with a sink [11], while for case (b),
Eq. (1) becomes a fractional master equation with a sink.
When taking the continuum limit of case (b), one gets a
fractional Fokker-Planck equation [13] with a sink.

In this Letter, we derive closed-form solutions in
Laplace space for the Green’s function that obeys
Eq. (1), and for the first passage time PDF, given in terms
of the state- and direction-dependent waiting time PDFs
[34]. The solutions are obtained by counting all possible
trajectories, and are applied here to study an escape prob-
lem from a biased chain. Moreover, based on our counting
technique, we introduce the adaptor function for express-
ing higher order propagators for CTRWs in terms of the
Green’s functions. For the particular case of exponential
waiting time PDFs, the factorization of higher order propa-
gators (joint PDFs of time-position variables) into a prod-
uct of Green’s functions, known for Markovian processes,
is recovered.

To derive a closed-form expression for the Laplace
transform of Gnm�t�, we start from the integral representa-
tion of Gnm�t�, Gnm�t� �

R
t
0Wnm�t	 ��
n���d�. Here,

Wnm�t� is the PDF to reach state n exactly at time t when
starting from state m exactly at time 0, and 
n�t� �
�j
jn�t�, where 
jn�t� �

R
1
t  jn���d�, is the sticking

probability, that is, the probability to arrive at state n before
time t and stay there. Using the convolution theorem, we
obtain the Laplace space relationship,
09810
	Gnm�s� � 	Wnm�s� 	
n�s�: (2)

To obtain 	Gnm�s� we need to calculate only 	Wnm�s�, since
	
n�s� is an input function. We first focus on 	W1l�s�. The

main idea of our calculation is to express 	W1l�s� as a sum
over all possible trajectories (again we use the convenient
property of a convolution),

	W 1l�s� � 	�1l�s�
X1
j�0

	�l�s; j�: (3)

Here, 	�1l�s� is the Laplace transform of the waiting time
PDF of the path of direct transitions from state l to state 1.
In general, 	�nm�s� is defined by

	� nm�s��
Yn�1

i�m

	 i�1i�s�; n�m; 	�mm�s��1; (4)

where the upper (lower) sign corresponds to the case n >
m (n < m). 	�1l�s� 	�l�s; j� is the Laplace transform of the
waiting time PDF of making j nearest neighbor closed
loops when starting at state l and ending at state 1 exactly
at time t, and the index l stands for the system size. By
nearest neighbor closed loops we mean, for example, a
loop made of a transition from state n to state n� 1 and a
back transition from state n� 1 to state n (not necessarily
consecutive transitions). 	�l�s; j� is obtained by counting all
possible continuous trajectories with j nearest neighbor
closed loops that started at state l and ended at state 1.
Our main objective is to find a general expression for
	l�s�, which is defined by

	 l�s� �
�X1
j�0

	�l�s; j�
�
	1
: (5)

We first consider a two-state chain for which �2�t; 0� �
��t�, and for j � 1, �2�t; j� �

R
t
0  21�t	 z��

�
Rz
0  12�z	 y��2�y; j	 1�dydz. This leads to the recur-

sion relation in Laplace space 	�2�s; j� �
� 	 12�s� 	 21�s�

j � 	�j2�s; 1�, and thus to

	 2�s� � 1	 	�2�s; 1�:

A recursion relation similar to that of 	�2�s; j� is found
for 	�3�s; j�, for a three-state chain, 	�3�s; j� �
� 	 21�s� 	 12�s� � 	 32�s� 	 23�s�j � 	�j3�s; 1�, which results
in

	 3�s� � 1	 	�3�s; 1�:

.
For a four-state chain, the recursion relation for 	�4�s; j�

is more involved. For the first two values of j�� 0; 1�,
	�4�s; 0� � 1, and 	�4�s; 1� � �3

i�1
	 ii�1�s� 	 i�1i�s�, as

usual. However, 	�4�s; 2� does not obey the relation
	�4�s; 2� � 	�2

4�s; 1�, but rather reads 	�4�s; 2� � 	�2
4�s; 1� 	

	 4�s�, where 	 4�s� � 	 21�s� 	 12�s� 	 43�s� 	 34�s�. The term
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	�14�s� 	 4�s� is a broken (discontinuous) trajectory. It is
the only broken trajectory in 	�14�s� 	�

2
4�s; 1�. This explains

the form of 	�4�s; 2�. For j > 1 we find 	�4�s;j��
	�4�s;1� 	�4�s;j	1�	 	 4�s� 	�4�s;j	2�, which, after some
algebra, leads to

	 4�s� � 1	 � 	�4�s; 1� 	 	 4�s�:

By performing similar calculations for longer chains, we
find that 	l�s� is given by

	 l�s� � 1�
X��l	1�=2;l=2

i�1

�	1�i 	hi�s�; (6)

where ��l	 1�=2; l=2 � l=2 if l is even and �l	 1�=2
otherwise [ 	l�s�jl�1 � 1], and,

	h i�s� �
Yi
j�1

Xl	1	2�i	j�

kj�kj	1�2

	 kjkj�1�s� 	 kj�1kj�s�; (7)

with k0 � 	1. Equations (3)–(7) give 	W1l�s�. For the case
�m; n� � �1; l�, 	Wnm�s� � 	�nm�s� 	

nm
l �s�= 	l�s�. 	nm

l �s� is
given by Eq. (6) but for a chain in which the states n and m
and those between them are excluded, and if after this
‘‘step’’ a state is left alone at one of the ‘‘edges’’ of the
reduced chain, it is excluded as well [with 	ij

l �s� �
	ji
l �s� � 1 for i � 2, j � l	 1]. Note that by using

	nm
l �s�, one can define a corresponding 	Wnm

1l �s�. 	Wnm
1l �s�

can then be used to express 	Wnm�s�. We omit further
discussion about this point here. Combining our results,
we find that 	Gnm�s�, which is the Laplace space solution of
the GME for any choice of state- and direction-dependent
kernels, is given by

	Gnm�s� � 	�nm�s�
	nm
l �s�
	l�s�

	
n�s�: (8)

Equations (4) and (6)–(8) are the main results of this
Letter. From Eq. (8) one can obtain the first passage time
PDF, FNm�t�, which is the PDF of the trapping times to the
trap state N when starting at state m, and contains in it the
probability to be trapped at state N. 	FNm�s� is obtained
when replacing in Eq. (8) 	
n�s� by 	 Nn�s�,

	F Nm�s� � 	�nm�s�
	nm
l �s�
	l�s�

	 Nn�s�: (9)

We turn now to study, as an example, an escape problem
from an l-state biased chain with irreversible trapping at
each state. The system is characterized by the state- and
direction-independent waiting time PDFs,  n�ln�t� �
 �t�q,  n	ln�t� �  �t�p,  Nn�t� �  �t�w, and p� q�
w � 1. To calculate the statistical properties of the process,
we need to calculate 	l�s�. 	l�s� is found from Eqs. (6)
and (7) to be

	 l�s� � 2�1=2�l 	Zl�1�s�= 	Z1�s�; (10)
09810
where 	Zj�s� � � 	Qj
��s� 	 	Qj

	�s�, and 	Q��s� �

1�
�����������������������������
1	 4pq 	 2�s�

p
. Equation (10), when substituted in

Eq. (9), generalizes previous results in Ref. [6]. Using
Eq. (10), we calculate the mean first passage time, T, to
reach state 0 when starting at state l. We assume that when
an irreversible trapping to some state N occurs, the process
starts again from state l after some characteristic time td. T
is defined by

T � #
�
�l�1 � �0 � td

Xl
i�1

�l�i

�
; (11)

where # � 1= 	F0l�0� is the average number of events that
occurred until an event that terminated at state 0 occurred,
and �j �

R
1
0 tFjl�t�dt � 	�@ 	Fjl�s�=@ss�0. Substituting

Eq. (10) and 	nl
l �s� � 	n	1�s� (n > 1) in Eq. (9), we get

in the limit of q! 0,

T � t �cp
	l 	 1�=w; t �

Z 1

0
t �t�dt; (12)

where c � 1� wtd=t . The dependence of T on the chain
length l changes from a linear one to an exponential one as
w changes from w! 0 to w! 1, meaning that by tuning
w one can drastically change the system’s behavior. This
simple model can be used to describe the biological activ-
ity of RNA polymerase, which has recently been studied on
the single molecule level [33].

Finally, we note that by simple combinations of terms
given by Eq. (8) one can obtain the Green’s function for a
process with a special first event waiting time PDF [2],
which is used, for example, when the process has been
taking place before the observation started, and the Green’s
function for a circular (closed-one-dimensional) chain.
Moreover, our technique of counting all possible trajecto-
ries makes it clear that to get (in Laplace space of appro-
priate dimensions) higher order propagators for any semi-
Markovian hopping process, the properties of only the
‘‘junction waiting time’’ [Fig. 1(b)] should be specially
considered. Thus, we introduce the ‘‘adaptor’’ function

An0n�u; s� �
	 n0n�s� 	 	 n0n�u�

u	 s
;

for a transition between state n to state n0. An0n�u; s� is the
double Laplace transform of the joint backward and for-
ward recurrence times PDF [Fig. 1(b)]. Only for the
Markovian case, An0n�u; s� � 	
n�s� 	 n0n�u�, leading to the
well-known factorization of higher order propagators into
a product of Green’s functions. For example, by using the
An�ln�u; s�, the double Laplace transform of Gknm��; t� �
Gknm�t� �; tj0� (�! u and t! s), which is the PDF to
occupy state k at time �� t and state n on time t when
starting from state m on time 0, is given for a chain with
nearest neighbor transitions by
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	G knm�u; s� � 	Wnm�s��An	ln�u; s� 	Gkn	1�u�

� An�ln�u; s� 	Gkn�1�u�: (13)

Higher order propagators are useful, for example, in dis-
criminating between different models describing activities
of single molecules [14,18,23,24]. In particular, Gknm��; t�
for the semi-Markovian process characterized by
’jn�t� � t	1	�, 0< �< 1, was given, in the continuum
limit, in Ref. [23]. Equation (13), however, can be applied
for any choice of the waiting time PDFs, and gives with
Eqs. (2)–(9) a detailed characterization of any one-
dimensional semi-Markovian hopping process with nearest
neighbor transitions.
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[12] M. Boguñá and G. H. Weiss, Physica (Amsterdam) 282A,

486 (2000); G. H. Weiss, J. Stat. Phys. 24, 587 (1981).
[13] R. Metzler and J. Klafter, Phys. Rep. 339, 1 (2000).
[14] O. Flomenbom, J. Klafter, and A. Szabo, Biophys. J. 88,

3780 (2005); O. Flomenbom and J. Klafter, Acta Phys.
Pol. B 36, 1527 (2005); J. Chem. Phys. 123, 064903
(2005).
09810
[15] J. Cao, J. Chem. Phys. Lett. 327, 38 (2000); S. Yang and J.
Cao, J. Chem. Phys. 117, 10996 (2002); J. B. Witkoskie
and J. Cao, J. Chem. Phys. 121, 6361 (2004).

[16] G. Margolin and E. Barkai, J. Chem. Phys. 121, 1566
(2004).

[17] P. Allegrini et al., Phys. Rev. E 68, 056123 (2003).
[18] J. Wang and P. Wolynes, Phys. Rev. Lett. 74, 4317

(1995).
[19] A. B. Kolomeisky and M. E. Fisher, J. Chem. Phys. 113,

10 867 (2000).
[20] E. Geva and J. L. Skinner, Chem. Phys. Lett. 288, 225

(1998); A. M. Berezhkovskii, A. Szabo, and G. H. Weiss,
J. Phys. Chem. B 104, 3776 (2000).

[21] E. Barkai, Y. Jung, and R. Silbey, Annu. Rev. Phys. Chem.
55, 457 (2004).

[22] I. Goychuk, Phys. Rev. E 70, 016109 (2004).
[23] V. Barsegov and S. Mukamel, J. Phys. Chem. A 108, 15

(2004).
[24] S. C. Kou and X. Sunney Xie, Phys. Rev. Lett. 93, 180603

(2004).
[25] B. Hille, Ion Channels of Excitable Membranes (Sinauer

Associates Inc., Sunderland, MA, 2001).
[26] J. J. Kasianowicz, E. Brandin, D. Branton, and D. W.

Deamer, Proc. Natl. Acad. Sci. U.S.A. 93, 13770 (1996).
[27] G. Zumofen, J. Hohlbein, and C. G. Hübner, Phys. Rev.
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