
On the relationships between kinetic schemes and two-state single
molecule trajectories

Ophir Flomenboma� and Joseph Klafter
School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University,
Ramat Aviv, Tel Aviv 69978, Israel

�Received 10 March 2005; accepted 1 June 2005; published online 16 August 2005�

Trajectories of a signal that fluctuates between two states which originate from single molecule
activities have become ubiquitous. Common examples are trajectories of ionic flux through
individual membrane channels and of photon counts collected from diffusion, activity, and
conformational changes of biopolymers. By analyzing the trajectory, one wishes to deduce the
underlying mechanism, which is usually described by a multisubstate kinetic scheme. In previous
works �O. Flomenborn, J. Klafter, and A. Szabo, Biophys. J. 88, 3780 �2005�; O. Flomenbom and
J. Klafter, Acta Phys. Pol. B 36, 1527 �2005��, we divided kinetic schemes that generate two-state
trajectories into two types: reducible schemes and irreducible schemes. A full characterization of the
reducible ones was given. We showed that all the information in trajectories generated from
reducible schemes is contained in the waiting time probability density functions �PDFs� of the two
states. It follows that reducible schemes with the same waiting time PDFs are not distinguishable;
namely, such schemes lead to identical two-state trajectories in the statistical sense. In this work, we
further characterize the topologies of kinetic schemes, now of irreducible schemes, and further study
two-state trajectories from the two types of scheme. We suggest various methods for extracting
information about the underlying kinetic scheme from the trajectory �e.g., calculate the binned
successive waiting times PDFs and analyze the ordered waiting time trajectories�, and point out the
advantages and disadvantages of each. We show that the binned successive waiting times PDFs are
not only more robust than other functions when analyzing finite trajectories, but contain, in most
cases, more information about the underlying kinetic scheme than other functions in the limit of
infinitely long trajectories. For some cases, however, analyzing the ordered waiting times trajectory
may supply unique information about the underlying kinetic scheme. © 2005 American Institute of
Physics. �DOI: 10.1063/1.1979489�

I. INTRODUCTION

Since the first patch clamp measurements,1 single mol-
ecule experiments have attracted the attention of researchers
due to the opportunity they provide in studying complex pro-
cesses in biology, chemistry, and physics in great detail.2–30

Examples include the flux of ions through individual
channels,1,2,22–26 the translocation of single-stranded DNA
and RNA through individual nanopores,27,28 diffusion of
single molecules,5–9 conformational fluctuations of
biopolymers,10–16 single enzyme activity,17–21 and blinking of
nanocrystals.29,30 By observing processes on the single mol-
ecule level one wishes to get detailed information about the
underlying mechanism, information that cannot be obtained,
in most cases, from bulk experimental output. Usually, the
underlying mechanism is described by a multisubstate ki-
netic scheme1,2,16–26,31–34 �for a more involved model de-
scribing single molecule activity see, for example, Ref. 35�.
In many single molecule experiments the observable at the
instantaneous time t can have two distinct values, implying
that each substate in the underlying kinetic scheme belongs
to one of two possible states, which are labeled the on and
the off states. The flipping events between the two states

produce a time series made of on and off waiting times �Figs.
1�a� and 1�b��, which is called a two-state trajectory. In ex-
periments, due to noise from several sources,36,37 fluctuations
occur around the values of the on and the off states. Methods
of analysis of noisy trajectories from various processes have
been considered.36,38 Here we are interested in obtaining as
much information as possible about the underlying kinetic
scheme by analyzing the noiseless two-state trajectory, with
perfect time resolution, generated by the kinetic scheme. In a
multisubstate scheme, the number of substates in each of the
states can be different �Figs. 2�a� and 2�b��, the connectivity
between substates within a state and between states can be
complex, i.e., exceed the one-dimensional nearest-neighbor
connectivity within a state �Fig. 2�c��, and can contain a
complex network of connections between substates of differ-
ent states �Figs. 2�d� and 2�e��. In addition, the scheme may
show a net flux in steady state along some connections �i.e.,
a nonequilibrium steady state�, when an external source of
energy is present.39

The central question that arises when trying to go back
from the two-state trajectory to the multisubstate kinetic
scheme17–26,33,34,37,38,40–52 is how much can one learn about
the underlying multisubstate kinetic scheme by analyzing
two-state single molecule trajectories? In previous works33,34a�Electronic mail: flomenbo@post.tau.ac.il

THE JOURNAL OF CHEMICAL PHYSICS 123, 064903 �2005�

0021-9606/2005/123�6�/064903/10/$22.50 © 2005 American Institute of Physics123, 064903-1

Downloaded 22 Aug 2005 to 132.66.16.12. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp

http://dx.doi.org/10.1063/1.1979489


we classified kinetic schemes according to the existence or
lack of correlations between successive waiting times in the
time series they generate. Kinetic schemes that lead to un-
correlated waiting times trajectories were termed reducible,
whereas those that lead to correlated waiting times trajecto-
ries were termed irreducible. A scheme is reducible due to
symmetry, which originates from a special choice of the
scheme details, or due to topology �specific combinations of
symmetry and topology lead to the same result34�. By giving
the topologies of reducible kinetic schemes, we established a
relationship between a general property of the trajectory and
the characteristics of the underlying mechanism. An impor-
tant consequence of our classification is that it is impossible
to discriminate between different reducible kinetic schemes
that have the same waiting time probability density functions
�PDFs�, which are the basic functions that characterize the
trajectory. In this paper, we further characterize the topolo-

gies of kinetic schemes, now of irreducible schemes, and
further study two-state trajectories from both scheme types.
We suggest several ways to analyze the time series. These
include calculating the binned successive waiting times
PDFs and analyzing the ordered waiting times trajectories.
Studying the advantages and disadvantages of each, we show
that, in most cases, the binned successive waiting times
PDFs are not just more robust than other functions when
analyzing finite trajectories, but are more informative than
other functions in the infinitely long trajectory limit. In some
cases, however, analyzing the ordered waiting times trajec-
tory may supply unique information about the underlying
kinetic scheme.

II. REDUCIBLE AND IRREDUCIBLE KINETIC
SCHEMES

The basic characterization of the time series is given by
the waiting time PDFs of the on state, �on�t�, and of the off
state, �off�t�. �on�t� and �off�t� are obtained from a trajectory
by building the histograms from the random on state and off
state waiting times, respectively. These PDFs cannot, in prin-
ciple, be obtained from bulk measurements. After extracting
�on�t� and �off�t� from the experimental trajectory, one ad-
justs the details of a multisubstate scheme such that the cal-
culated �on�t� and �off�t� are the same as that of the experi-
mental ones. As �on�t� and �off�t� are the first passage time
�FPT� PDFs of the multisubstate scheme decoupled into ir-
reversible on and off processes with initial conditions being
the normalized steady-state flux of the coupled system,41,42

one can always calculate these PDFs given a kinetic scheme.
However, when �on�t� and �off�t� are multiexponentials, one
can find several different schemes that lead to the same
�on�t� and �off�t�. This situation raises the question whether
one can discriminate between kinetic schemes that lead to

FIG. 1. Two trajectories of an observable that fluctuates between two values
�on and off� as a function of time. The trajectories are obtained by simulat-
ing the kinetic schemes shown in Fig. 3�f� �a� and Fig. 3�g� �b�, when
making �on�t� and �off�t� of the two schemes the same �see Sec. III for
details�.

FIG. 2. �a�–�f� A set of reducible kinetic schemes, and a TSSM scheme �f�, characterized only by the waiting time PDFs �on�t� and �off�t�. �a� An n uncoupled
off substates connected to one on substate. A full arrow between two substates represents a connection in the direction of the arrow. The dashed line represents
the off substates that are not shown. �b� An n coupled off substates with one on substate scheme. �c� A reducible scheme with two gateway substates in the
same state �the on state�. The bolded pentagons stand for any complex network of connections within a state. The dashed arrow stands for a set of connections
between many off �on� substates and one on �off� substate, and the dashed-dotted arrow stands for a set of connections between one on �off� substate and many
off �on� substates. The lines stand for any set of possible bidirectional arrows between the connected entities. �d�–�f� When the gateway substates in both the
on and the off states are of type 1 �d�, or of type 2 �e�, the scheme is reducible to a TSSM scheme �f�.
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the same waiting time PDFs by calculating other functions
from the trajectory. These functions include �a� the PDFs of
two successive waiting times,6,17,33,34,37,40–47 �x,y�t1 , t2� x ,y
=on,off; �b� the x-y propagator G�xt̃ �y��
=G�xt �y0�,17–19,21,44,48–51 which is the bulk relaxation func-
tion. Here, t� t̃−��0 and the equality is valid for stationary
processes as we consider here; �c� higher-order
propagators,19,48,52 e.g., G�xt ;y� �z0�, where x ,y ,z=on,off
and t���0; and �d� PDFs of higher-order successive wait-
ing times, e.g., �x,y,z�t1 , t2 , t3�.33 Note that the functions in
�a�, �c�, and �d� can be obtained only from single molecule
trajectories.

A. Reducible schemes

Reducible schemes are those for which each of the func-
tions �a�–�d� mentioned above obtained from the trajectory is
given in terms of �on�t� and �off�t�. This means that all the
information in the trajectory is already contained in these
PDFs. Thus, such a trajectory can be generated from a two-
state semi-Markov �TSSM� process �Fig. 2�f��, with the wait-
ing time PDFs �on�t� and �off�t�. A TSSM process is a pro-
cess where the on and the off waiting times are drawn
randomly and independently out of nonexponential waiting
time PDFs.53,54 We refer to schemes that generate uncorre-
lated waiting time trajectories as reducible, because, as far as
can be deduced from a trajectory, the complex topology of
the scheme is reduced to the simplest topology of a two-state
scheme �Fig. 2�f��. It follows that two-state trajectories from
reducible schemes with the same waiting time PDFs are
identical in the statistical sense. Namely, it is impossible to
distinguish between reducible schemes with the same wait-
ing time PDFs if all the information about the process is
extracted only from a trajectory.

A test for the lack of correlations in the two-state trajec-
tory is the factorization of �x,y�t1 , t2� x ,y=on,off into the
product of �x�t1� and �y�t2� for every x ,y=on,off,

�x,y�t1,t2� = �x�t1��y�t2�, x,y = on,off. �1�

Generally, Eq. �1� holds when the scheme possesses gateway
substates in either of the states or in both. A substate in state
x is a gateway substate when each event in the state either
starts at this substate �type 1� or terminates through it �type
2�. If a scheme has one gateway substate �of any type� in
either the on the off states, then Eq. �1� holds for x=y, for
both cases of x=on,off. One gateway substate, however, is
not sufficient for the factorization of �x,y�t1 , t2� for the case
of x�y; in particular, one gateway substate of type 1 �type
2� in state x is sufficient for the factorization of �y,x�t1 , t2�
��x,y�t1 , t2��, but not for the factorization of �x,y�t1 , t2�
��y,x�t1 , t2��, see Ref. 34 for the mathematical treatment. A
scheme is reducible due to its topology only if it has in
addition to a gateway substate33,34 �i� another gateway sub-
state of a different type in the same state �specific examples
are those schemes that have one substate in either the on or
the off states, Figs. 2�a� and 2�b� and Figs. 3�a�–3�c�; a more
general example is shown in Fig. 2�c��, or �ii� and �iii� an-
other gateway substate of the same type in the other state
�Figs. 2�d� and 2�e��. We emphasize that since our argument
relies on the connectivity of the scheme, cases �i�–�iii� can be
characterized by any waiting time PDF for a substate, and
not only by the Markovian �exponential� type.55 Further-
more, we note that some topologies that correspond to case
�i� lead to equilibrium at steady state �those schemes that
have one substate in either the on or the off states�, whereas
topologies that correspond to cases �ii� and �iii� lead to non-
equilibrium at steady state. To summarize the above possi-
bilities we state that the classes of schemes that fulfill Eq. �1�
due to topology are those schemes for which each on �off�
event along the trajectory has the same initial probabilities
among the on �off� substates as the previous on �off� events.
Note that other less general schemes might be reducible
when choosing the scheme details in a special way that leads
to symmetry33,34 �see the discussion below Eq. �10��.

To demonstrate the relationship between the scheme to-
pology and the characteristics of the trajectory, as well as the

FIG. 3. A set of reducible and irreducible kinetic schemes. For the Markovian case, an arrow from substate i to j represents a transition with a rate aji. More
generally, an arrow from substate i to j represents a transition with probability � ji, where substate i has a waiting time PDF �i�t�. �a�–�c� All possible
three-substate scheme are reducible. �d� An example for an irreducible scheme with a single gateway substate, denoted on 3. �e� An example for an irreducible
scheme with a single intermediate gateway substate, denoted on 3. �f� The simplest irreducible scheme. �g� A reducible four-substate scheme.
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equivalence of trajectories from reducible kinetic schemes,
we consider the two schemes shown in Figs. 2�a� and 2�b�
�hereafter, schemes 2�a� and 2�b��. Both schemes contain n
off substates and one on substate. Specifically, we assume
that both processes are characterized by a set of transition
rates. The expression for �on�t� for scheme 2�a� reads

�on�t� = �e−�t, � = �
j=1

n

ajon, �2�

where aion is the transition rate from the on substate to the ith
off substate. The expression for �on�t� for scheme 2�b� is
equivalent to that given by Eq. �2�, and we can choose the
transition rate from the on substate to the off substate �de-
noted substate 1� to be equal to �. The expression for �off�t�
for scheme 2�a� is given as a sum of weighted exponentials

�off�t� = �1/���
j=1

n

ajonaonje
−aonjt � �

j=1

n

Wj
off� j�t� , �3�

where � j�t�=aonje
−aonjt is the waiting time PDF of the jth off

substate, Wj
off=ajon/�, and aonj is the transition rate from the

jth off substate to the on substate. The expression for �off�t�
for scheme 2�b� is also given by a sum of weighted expo-
nentials, and can be made the same as �off�t� of scheme 2�a�.
This mapping is accomplished by comparing the Laplace
transforms �ḡ�s�=�0

�g�t�e−stdt� of �off�t� of the two schemes.
Specifically, we equate coefficients of similar powers of the
Laplace variable s in the numerator and the denominator, and
then solve the obtained set of n equations that relate the
transition rates of one scheme to the transition rates of the
other scheme. Note that the mapping leads to relationships
between the off substate transition rates of scheme 2�b� and
the on substate transition rates of scheme 2�a�. Having
matched the two waiting time PDFs of the two schemes, we
turn now to generating the trajectories. We first generate a
trajectory from scheme 2�a�. A random time is drawn out of
�on�t� and then a direction is chosen that determines to
which off substate the process evolves. This stage, however,
can be viewed as part of the off event �in this Gillespie56

kind of algorithm, the choice of the direction does not “cost”
time�. Thus, the off waiting time is generated by first choos-
ing a specific substate i according to the weights 	Wj

off
 j=1
n ,

and then drawing a random time out of �i�t�. This algorithm
leads to independence between successive on-off waiting
times, as these are drawn independently. The next cycle is
generated in exactly the same way; namely, the cycle starts
from the same single on substate. This means that successive
on-on and off-off waiting times are independent as well. Due
to this independence, other algorithms can be used for gen-
erating the random waiting times; in particular, each off wait-
ing time can be generated using the rejection method.57 Now,
looking at scheme 2�b�, we notice that due to the scheme
special connectivity between the on and the off substates,
each event always starts at the same substate and terminates
through the same substate. This leads to independence be-
tween each pair of successive waiting times in the trajectory
generated by scheme 2�b� as well, which again means that
several algorithms can be used to generate the trajectory.

Thus, we can choose the same algorithm to generate trajec-
tories from schemes 2�a� and 2�b�. Finally, as we made �on�t�
and �off�t� of the two schemes the same, the trajectories from
the two different schemes will have the same statistical prop-
erties, and clearly cannot be distinguished.

Technically, to identify a reducible kinetic scheme from
a trajectory one should check whether Eq. �1� holds. In prac-
tice, �x,y�t1 , t2� is built from the experimental trajectory by
constructing a two-dimensional histogram of the intersection
of successive x and y waiting times. However, when
�x,y�t1 , t2� calculated from the trajectory is too “noisy” due to
the spreading of the limited number of events in the trajec-
tory onto two-dimensions, another test that discriminates re-
ducible schemes from irreducible ones can be applied. Albeit
less informative �see the discussion in Sec. II B�, this test
utilizes the x-y propagator G�xt �y0�, x ,y=on,off. G�xt �y0�,
or the corresponding state-correlation function, can be calcu-
lated directly from the time series, and then compared to the
theoretical expression for a TSSM process58 with the input
waiting time PDFs being the experimentally obtained �on�t�
and �off�t�.

21 If the two functions coincide, the scheme that
generated the trajectory is reducible. Note that given the ba-
sic waiting time PDFs, every function calculated from the
trajectory can be compared with the corresponding theoreti-
cal function for a TSSM process, and thus can be used for
discriminating reducible from irreducible kinetic schemes.
See Sec. III for an example.

As a final remark regarding the properties of a stationary
time series from a reducible kinetic scheme, we emphasize
that detailed balance �microscopic reversibility� is always
fulfilled on the on-off level regardless of the details of the
reducible scheme. It was suggested by Song and Magdeby47

that to check detailed balance, one should compare
�x,y�t1 , t2� obtained from the trajectory with �x,y�t1 , t2� ob-
tained from reading the trajectory backwards. This method
should only be used for trajectories generated by irreducible
schemes �see Ref. 40 as well�.

B. Irreducible schemes

Irreducible schemes are those for which Eq. �1� does not
factorize for at least one combination of x ,y=on,off. We
consider two options: �A� �x,y�t1 , t2� factorizes for three
combinations of x ,y=on,off, and �B� �x,y�t1 , t2� factorizes
only for x=y. The occurrence of case �A� can indicate that
the kinetic scheme possesses one gateway substate in either
state �Fig. 3�d��, although special symmetric schemes can
lead to similar results. The occurrence of case �B� can indi-
cate that the kinetic scheme possesses an intermediate gate-
way substate in either state �Fig. 3�e��. A substate is an in-
termediate gateway substate when every event passes
through it but does not start or terminate through it. Interme-
diate gateway substates do not lead to reducible schemes
even when they appear in both states or with a gateway sub-
state.

In the remaining of the paper, we study several methods
for analyzing trajectories. These methods are mainly useful
for extracting information about the details of irreducible
schemes, but can also be used to help identify the type of the
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scheme. By applying the various methods on several trajec-
tories, we characterize the relative advantages and disadvan-
tages of each in supplying as much information as possible
about the scheme details. For this we consider the simplest
irreducible scheme, which is the four-substate scheme shown
in Fig. 3�f�, hereafter scheme 3�f�. A two-substate scheme
�Fig. 2�f��, as well as all three-substate schemes are reducible
�Figs. 3�a�–3�c��. We start by constructing the waiting time
PDFs for scheme 3�f�. The scheme is defined by the waiting
time PDF per substate �i�t�, i=1,2 ,3 ,4, and the transition
probabilities � ji �� ji is the transition probability from sub-
state i to j�. The expression for �on�t�, which is given in
terms of the on substate waiting time PDFs �1�t� and �4�t�,
reads

�on�t� = W1
on�1�t� + W4

on�4�t� . �4�

The weights Wi
on’s are the probabilities to start an on event at

substate i, and are given in terms of the transition probabili-
ties

W1
on = �12�23/��12�23 + �32�43� , �5�

and W4
on=1−W1

on due to the normalization condition. The
expression for �off�t� reads

�off�t� = W2
offF2

off�t� + W3
offF3

off�t� , �6�

where due to the connectivity of the scheme we have W2
off

=W1
on, and W3

off=1−W2
off. F1

off�t�, which is the conditional
FPT PDF to exit the off state given that the off event started
at the off i substate, is given by

Fi
off�t� = f1i

off�t� + f4i
off�t� . �7�

f ji
off�t� is the conditional FPT PDF to reach substate j of the

on state given that the event started at substate i of the off
state. The Laplace transform of f ji

off�t� is calculated by count-
ing all possible trajectories that started at substate i of the off
state and terminated at substate j of the on state,54 and leads
to

F̄2
off�s� =

�̄2�s��12

D̄�s�
+

�̄2�s��32�̄3�s��43

D̄�s�
�8�

and

F̄3
off�s� =

�̄3�s��23�̄2�s��12

D̄�s�
+

�̄3�s��43

D̄�s�
. �9�

The first �second� term on the expressions for F̄i
off�s� is f̄1i

off�s�
� f̄4i

off�s��, where �D̄�s��−1= �1− �̄2�s��32�̄3�s��23�−1 is the fac-
tor that represents all possible number of transitions between
substates 2 and 3 before leaving the off state for the first
time.

For scheme 3�f�, the calculations of the two successive
waiting times PDFs �x,y�t1 , t2�, and higher-order ones, are
straightforward.59 For example, the difference off-off succes-
sive waiting times PDF, ��off,off�t1 , t2�=�off,off�t1 , t2�
−�off�t1��off�t2�, is given by

��off,off�t1,t2� = W2
offW3

off�F3
off�t1� − F2

off�t1���F3
off�t2�

− F2
off�t2�� + �f42

off�t1� − f13
off�t1��

	�W2
offf42

off�t2� − W3
offf13

off�t2�� , �10�

and is a symmetric function of the time arguments t1 and t2,
as f42

off�t�
 f13
off�t�. Note that for any reducible scheme

��off,off�t1 , t2� �and more generally ��x,y�t1 , t2�, x ,y
=on,off� vanishes by definition. Equation �10� vanishes only
for a symmetric choice of the scheme details that leads to
F3

off�t�=F2
off�t� and f42

off�t�= f13
off�t�. This means that a symmet-

ric scheme is reducible.
The binned, or summed, waiting time PDF defined by

�x+y�t� =� �
0

�

��t − t1 − t2��x,y�t1,t2�dt1dt2, �11�

and its difference

��x+y�t� =� �
0

�

��t − t1 − t2���x,y�t1,t2�dt1dt2, �12�

with the Laplace transform relation �̄x+y�s�= �̄x,y�s ,s� and
��̄x+y�s�=��̄x,y�s ,s�, plays a significant role in the analysis
of finite trajectories. �x+y�t� is obtained from a trajectory by
constructing the histogram of the random times: tx+y,i= tx,i

+ ty,i, where tx,i and ty,i are successive waiting times, i
=1, . . . ,N if x�y and i=1, . . . ,N−1 if x=y, and N is the
number of on-off cycles in the trajectory. We wish to
compare this function to other single-argument functions.
For this we choose the equal successive waiting times
PDFs ��x,y�t1 , t2��t1=t2�t. Other option for a comparison,
which will not be considered here, is the x-y propagator
G�xt �y0�. G�xt �y0�, however, is built from an
imprecise number of on-off cycles, so it mixes more strongly
the details of the on and the off substates than,
for example, ��x,y�t1 , t2��t1=t2�t. On the other
hand, ��x,y�t1 , t2��t1=t2�t obtained from a finite trajectory is
noisier than �x+y�t� and G�xt �y0�, as it is built out of much
less events that compose the trajectory than the other two
PDFs. We compare below �x+y�t� and ��x,y�t1 , t2��t1=t2�t for
an infinitely long trajectory generated from scheme 3�f� for

the Markovian case. Thus, we have �̄i�s�=�i / �s+�i�, �i

=� jaji, and � ji=aji /�i. We take �1=1, �2=k, �3=1, �4=k,
and �12=�43= p. Here, k sets the extent of asymmetry of the
scheme �for k=1 the system is symmetric and thus, reduc-
ible�, and p determines the average number of internal tran-
sitions between the off substates before a transition off
→on occurs �as p→1 no such internal transitions are ex-
pected to occur�. Figures 4�a�–4�c� show �off,off�t�
=�off,off�t , t�, �off

2 �t�, and ��off,off�t�=��off,off�t , t�, for k
=0.01,0.05, and p=0.35.60 For this value of p several tran-
sitions between the off substates are expected to occur in
each off event. �off,off�t�, �off

2 �t�, and ��off,off�t� show similar
behavior in the examined range of parameter values.
��off,off�t� exhibits a sharp decay from an initial amplitude,
which is followed by a peak appearing at larger times, see
Refs. 42 and 43 for a similar behavior. The peak is two
orders of magnitude smaller than the maximal value of the
PDF �Figs. 4�b� and 4�c��. The same qualitative behaviors of
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�off,off�t�, �off
2 �t�, and ��off,off�t� are obtained for k

=0.01,0.05, and p=0.95 �Figs. 5�b� and 5�c��, where for this
value of p transitions between the off substates rarely occur
in a given off event.

In contrast, �off+off�t� and �off
*�off=��0

���t− t1

− t2��off�t1��off�t2�dt1dt2 are more sensitive to changes in the
parameter values �Figs. 6�a�–6�c��. For p=0.35 �Figs. 6�a�
and 6�b��, two peaks appear in �off+off�t� for both k values,
and their amplitudes are comparable. The difference
��off+off�t� shows a global maximum followed by a global
negative minimum, and its amplitude increases while de-
creasing k. For p=0.95 �Figs. 6�c� and 6�d��, as k decreases,
the second peak of �off+off�t� is separated from the early time
peak, shown as a shoulder for k=0.05 and as a small peak for
k=0.01, and its amplitude decreases linearly with k. For this
case, the second peak represents the bunching of slow events
in the ordered waiting time trajectory �see Fig. 7�a� and the
discussion in Sec. III�. The difference ��off+off�t� shows a
similar behavior as for the p=0.35 case, although, here, a
second small peak is visible, occurring after the global nega-
tive minimum.

From the above analysis it stems that the binned succes-
sive waiting times PDFs, �x+y�t�, are not just more accu-
rately obtained from finite trajectories relative to the equal
time successive waiting times PDFs ��x,y�t1 , t2��t1=t2�t, but
that the former PDF is more sensitive to changes in the
scheme parameters. The second point can be explained math-

ematically, when pointing out that �x+y�t� contains more in-
formation than ��x,y�t1 , t2��t1=t2=t about the two-dimensional
histogram �x,y�t1 , t2�, as the former PDF is obtained by inte-
grating over a line of length t�2 that intersects the axes of
the two-dimensional plane of �x,y�t1 , t2� in the points �0, t�
and �t ,0�, whereas the latter PDF is obtained from only the
point �t , t� of this plane.

III. THE ORDERED WAITING TIMES TRAJECTORY

Another way of presenting the data is to plot vertically
the waiting times as a function of their occurrence. The or-

FIG. 5. �a�–�c� �off,off�t�, �off
2 �t�, and ��off,off�t� are shown for k=0.01, 0.05,

and p=0.95.

FIG. 6. �off+off�t� �top curves� and �off
*�off ��a� and �c��, and ��off+off�t�

��b� and �d�� are shown for the same range of parameters as in Figs. 4 and 5.
For the top panels ��a� and �b�� p=0.35, and for the bottom panels ��c� and
�d��, p=0.95.

FIG. 7. �a� and �b� The ordered off waiting times trajectories that correspond
to the on-off trajectories shown in Figs. 1�a� and 1�b�. The on-off trajectories
are obtained by simulating the kinetic schemes shown in Fig. 3�f� �a� and
Fig. 3�g� �b�, when making �on�t� and �off�t� of the two schemes the same,
for scheme 3�f� �arbitrary units� parameters, �1=�3=1, �2=�4=0.1, and
�12=�43=0.95 �aji=�i� ji�. �c� The correlation functions of the off ordered
waiting times trajectories calculated from 10 000 event trajectories. Exclud-
ing the first point which is normalized to one, Roff,off�i� decays exponentially
for the trajectory from scheme 3�f� �circle symbol�, Roff,off�i�=0.27e−0.12i.
See the inset plotted on a log-linear scale �also shown is a fitting function�.
For the trajectory from the reducible scheme 3�g� �triangle symbols�,
Roff,off�i�=�i,0. �d� �off+off�t� s calculated from the 10 000 event trajectories
�circle and triangle symbols as in �c��, and the analytical �dashed� curves.
The calculated �off+off�t� s converge to the analytical curves. Differences
between the �off+off�t� s from the two trajectories are detectable.

FIG. 4. �a� �off,off�t� �upper curve�, �off
2 �t� �lower curve�, for the four-

substate irreducible scheme �Fig. 3�f��, for k=0.01, 0.05, and p=0.35. �b�
and �c� The difference ��off,off�t�. Here, and in all the other figures, the
function log�·� stands for the natural logarithm of �·�, i.e., ln�·�.
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dered waiting times trajectory may show pronounced pat-
terns that can be used to obtain valuable information about
the scheme type and details. For some cases, the analysis of
the ordered waiting times trajectory can be advantageous
over other methods. We refer to such a case in the last para-
graph of this section.

To study the ordered waiting times trajectory, we first
make �on�t� and �off�t� of the irreducible scheme 3�f� the
same as the corresponding PDFs from the reducible four-
substate scheme shown in Fig. 3�g� �hereafter scheme 3�g��
by using the same steps mentioned below Eq. �3�. The map-
ping is done for the Markovian case, namely, for an expo-
nential waiting time PDF per substrate. The mapping leads to
the following relationships between the transition rates of the
reducible off substrates �b21,b12,b32� and the irreducible
ones,

b21 =
�2�3�1 − �32�23�
W2

offa12 + W3
offa43

, �13�

b32 = W2
offa12 + W3

offa43, �14�

b12 = �2 + �3 − b21 − b32, �15�

and between the transition rates of the reducible on sub-
strates �b34,b43,b23� and the irreducible ones,

b34 =
�1�4

W1
on�1 + W4

on�4
, �16�

b23 = W1
on�1 + W4

on�4, �17�

b43 = W1
on�4 + W4

on�1 − b34. �18�

Using Eqs. �13�–�18�, it can be easily shown that for every
choice of the ajis �0 and real� the corresponding bjis are all
positive and real as well, namely, such a mapping exists al-
ways.

We generate trajectories from the two schemes by using
Eqs. �13�–�18�, and the same relationships between the tran-
sition rates of the irreducible scheme applied in Sec. II B. We
further set k=0.1 and p=0.95. The two trajectories are
shown in Figs. 1�a� and 1�b�, generated from the irreducible
and reducible schemes, respectively. The corresponding or-
dered off waiting times trajectories are shown in Figs. 7�a�
and 7�b�. Patterns in the ordered off waiting times trajectory
from the irreducible scheme are immediately noticeable �Fig.
7�a��, and can be hardly detected in the observable �on-off�
trajectory �Fig. 1�a��. The off ordered waiting times trajec-
tory generated from the reducible scheme �Fig. 7�b�� shows
no specific patterns. Thus, by looking at the ordered waiting
times trajectories one can gain insight into the type of the
generating kinetic scheme, an insight that is difficult to ob-
tain from the two-state trajectory. A pronounced pattern in
the ordered waiting times trajectory is noticed when at least
two distinct groups of waiting times with similar lengths per
waiting time in a group are detected. Such patterns are re-
ferred to as bunching. Although the waiting times in each of
the groups are not correlated, the existence of at least two
different groups with common characteristics per event

within a group gives rise to correlations in such a trajectory.
Thus, we use the term bunching only when the normalized
correlation function of the ordered waiting times trajectory,
Rx,y�i� �see the definition below�, is not the Kronecker delta
�i,0, namely, when the two-state process is not a renewal
process.53 The correlation function of the ordered waiting
times trajectory is the same function used by Xie and
co-workers17,48 and calculated by Cao.42 Denoting the corre-
lation function of the off ordered waiting times trajectory by
Roff,off�i�, it is defined by

Roff,off�i − 1� =
toff,1toff,i� − toff�2

toff
2 � − toff�2 ,

where

toff
n � = �

0

�

tn�off�t�dt ,

toff,1toff,i� =� �
0

�

t1ti�off,off�t1,ti�dt1dti,

and

�off,off�t1,ti�

=� ¯ �
0

�

�off,z2,. . .,zi−1,off�t1,t2, . . . ,ti−1,ti�� j=2

i−1
dtj ,

with zj =off, j2. Figure 7�c� shows Roff,off�i� calculated
from trajectories of 10 000 on-off cycles, part of which are
shown in Figs. 7�a� and 7�b�. Roff,off�i� from the trajectory
generated by the irreducible scheme 3�f� decays exponen-
tially with i �inset�, whereas it is a �i,0 from the trajectory
generated by the reducible scheme 3�g�. For comparison,
Fig. 7�d� shows �off+off�t� calculated from both trajectories.
The analytical curves are shown as well. �off+off�t� calculated
from the 10 000 cycles trajectory converges to the analytical
curves for both cases. Following the note at the end of Sec.
II A, �off+off�t� can be calculated from the trajectory and can
be compared with the theoretical result assuming a renewal
process. If the two PDFs coincide the scheme that generated
the trajectory is reducible.

Before presenting another way of analyzing the ordered
waiting times trajectory, we note that excluding Roff,off�0�
which is normalized to one, Roff,off�i� is obtained from mo-
ments of PDFs of different successive off waiting times �in-
tegrated over the times t2 , . . . , ti−1 �i2��. In addition,
higher-order PDFs of successive waiting times are less accu-
rately obtained from finite trajectories. We thus argue that it
is hard to get information from Roff,off�i� about the scheme
details.

Another way of analyzing the ordered waiting times tra-
jectory when bunching occurs is to use a threshold that sets
apart the fast from the slow events.61 More generally, when
several time scales are noticeable, several thresholds can be
used. In the example shown in Fig. 7�a�, one can calculate,
by using a threshold, the average of the fast off waiting
times, which is related to the transition rates in the scheme
by
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t̄off,fast � 1/�2, �19�

and the average number of successive fast off waiting times,
which is related to the scheme transition rates by62

n̄off,fast + 1 � 1/�32, �20�

where the sign � indicates that a threshold value method
was applied. Similar expressions are valid for the slower off
waiting times

t̄off,slow � 1/�3, �21�

and

n̄off,slow − 1 � 1/�23. �22�

For a trajectory of 10 000 events part of which is shown in
Fig. 7�a�, we get by using Eqs. �19�–�22� the following off
transition rate values: �2=10.57, �3=0.99, and �12=�43

=0.08. These numbers are obtained when applying a thresh-
old value of 2.5, and taking into consideration the value of
nearest-neighbor waiting times when determining the type of
a given waiting time.61

The threshold method preformed on the ordered waiting
time trajectory is applicable when different time scales are
easily detected. This method may give more information
about the kinetic scheme than Roff,off�i�. For cases where
bunching is not detected by looking at the ordered waiting
times trajectory, Roff,off�i� and �off+off�t� can still be calcu-
lated. However, for some cases, the signal from Roff,off�i�
may be very poor, although �off+off�t� can be accurately ob-
tained. For example, taking k=0.1 and p=0.35, the ordered
waiting times trajectory generated from the irreducible
scheme 3�f� �Fig. 8�a�� exhibits similar pattern as that gener-
ated from a reducible scheme 3�g� �Fig. 8�b��. For this choice
of parameters, the signal in Roff,off�i�, which is obtained from
a 10 000 cycles trajectory, is practically zero �Fig. 8�c��.
However, �off+off�t� is still accurately obtained �Fig. 8�d��.
Thus, by using the function ��off+off�t� one can determine
the type of scheme and extract information about the scheme
details. This example further supports the advantages of
�off+off�t� over the other methods of analysis.

Nevertheless, the advantage of using the threshold
method on the ordered waiting times trajectory when bunch-
ing does occur is that it can supply unique information about
the kinetic scheme when it contains many substates. For ex-
ample, in the study of the catalytic activity of individual
lipase molecules �lipase B from candida antarctica� bunched
fast events were detected in the ordered off waiting times
trajectory.21 In this case, �off�t� followed a stretched expo-
nential, and the enzymatic activity was modeled by a kinetic
scheme with a large number of substates �conformations�.
Using Eqs. �19� and �20�, the average reaction rate of the fast
conformations and the average fluctuation rate from fast to
slow conformations were obtained from the ordered off wait-
ing times trajectory.

IV. CONCLUDING REMARKS

In this paper, we have studied two-state single molecule
trajectories generated by multisubstate kinetic schemes. We

have been interested in obtaining as much information as
possible about the kinetic scheme by analyzing the trajectory.
Based on our previous work,33,34 we have used our classifi-
cation of kinetic schemes; reducible schemes that generate
two-state trajectories with no correlations between waiting
times, and irreducible schemes that generate correlated wait-
ing time trajectories.

Two-state trajectories from reducible schemes are iden-
tical in the statistical sense to trajectories generated by a
two-state semi-Markov process with the same waiting time
PDFs of the on and the off states, and are fully characterized
by these PDFs. Thus, reducible schemes with the same wait-
ing time PDFs cannot be discriminated by the analysis of a
trajectory. The lack of correlations between events along the
trajectory stems from special topologies of the underlying
kinetic scheme, or indicates for symmetry in the scheme,
which results from a special choice of the scheme details
�specific combinations of symmetry and topology lead to the
same result�. To list the special topologies, we have defined a
special substate called a gateway-substate, where a gateway
substate is one in which all events in a given state either start
at �type 1� or terminate through �type 2�. The topologies that
lead to reducible schemes include �i� two gateway substates
of different types in either the on or the off states, and �ii�
and �iii� two gateway substates of the same type in different
states.

Two-state trajectories from reducible kinetic schemes
supply direct information only on the explicit forms of �on�t�
and �off�t�. From this, one can deduce �to some extent� the
number of substates in each of the states, and the scheme
connectivity between states. Two-state trajectories from irre-

FIG. 8. �a� and �b� The ordered waiting times trajectories as in Fig. 7 but for
other set of parameters for scheme 3�f�, �1=�3=1, �2=�4=0.1, and �12

=�43=0.35. �c� The signal in Roff,off�i� calculated from a 10 000 event tra-
jectory is poor, and the curves from the irreducible scheme 3�f� and the
reducible scheme 3�g� are practically the same; namely, for both cases
Roff,off�i���i,0 �Roff,off�i� from the irreducible scheme 3�f� is shown in the
inset on a log-linear scale�. �d� However, �off+off�t� s calculated from the
10 000 event trajectories converge to the analytical �dashed� curves. For
both �c� and �d�, the circle and triangle symbols are for the irreducible �3�f��
and the reducible �3�g�� schemes.
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ducible kinetic schemes contain information about the
scheme connectivity within the states. By calculating the two
successive waiting times PDFs �x,y�t1 , t2� from the trajectory,
which is obtained by constructing a two-dimensional histo-
gram of the intersection of successive x and y waiting times,
one can identify an intermediate gateway substate �when Eq.
�1� holds only for x=y� and one gateway substate �when Eq.
�1� holds for exactly three combinations of x ,y=on,off�. An
intermediate gateway substate is one where in every event
the process passes through but does not start at or terminate
through. We note that special symmetric schemes can lead to
the same result.

When �x,y�t1 , t2� obtained from the trajectory is too
“noisy” due to the limited number of events in the trajectory,
one can construct the binned, or summed, successive waiting
times PDFs, e.g., �x+y�t�, x ,y=on,off, obtained from the tra-
jectory by building the histogram of the random times that
are the sum of successive waiting times. �x+y�t� has a single
argument, so it is less noisy than �x,y�t1 , t2�. �x+y�t� contains
more information about the scheme than ��x,y�t1 , t2��t1=t2=t,
both for technical reasons �only the former PDF is obtained
from all successive x-y events in the trajectory�, and math-
ematical ones, which makes this PDF more sensitive to
changes in the scheme parameters. �x+y�t� can be viewed as
a more sensitive probe for the scheme details than G�xt �y0�,
because G�xt �y0�, in contrast with �x+y�t�, contains informa-
tion from not a precise number of x-y events, so it mixes
more strongly the details of the on and the off substates.
These two PDFs, however, can be used for identifying the
scheme type: for reducible schemes ��x+y�t�=0, and
G�xt �y0�, or the corresponding state-correlation function, co-
incides with the theoretical one for a TSSM process.

Another way of extracting information from the time
series is obtained by analyzing the ordered waiting times
trajectory. This is the trajectory of the waiting times plotted
vertically, either only on or off waiting times or on-off wait-
ing times, as a function of their chronological occurrence.
The ordered waiting times trajectory, which is easily ob-
tained from the data, may display bunching from a relatively
small number of events. Bunching means that at least two
distinct groups of waiting times with similar length per wait-
ing time in a group are detected in the ordered waiting times
trajectory. One can calculate the correlation function of this
trajectory, Rx,y�i�, or use a threshold for a strong bunching
situation to get information about the scheme type and de-
tails. We have found that �x+y�t� is again a better tool in
analyzing the data than Rx,y�i� both for technical reasons �for
the no visible bunching case, the signal in Rx,y�i� is poor,
although �x+y�t� is still accurately obtained� and mathemati-
cal ones �Rx,y�i� is the obtained from moments of different
order of successive waiting time PDFs�. Clearly, �x+y�t� is
advantageous over the threshold method in the weak bunch-
ing limit. However, when the scheme contains many sub-
states, and for a strong bunching situation, the threshold
method applied on the ordered waiting times trajectory may
supply information that cannot be obtained from other
methods.

As a final remark we refer to a case where a trajectory
contains more than two detectable states but less than the

number of substates in the underlying kinetic scheme. In-
deed, such a trajectory will provide more details about the
process than a two-state trajectory. However, as it will not
represent all the substates of the system, similar ideas to
those presented here and in our previous works33,34 should be
considered when analyzing it.

Note added in proof. It has come to our attention that in
a recent work in the context of ion channel gating kinetics,
Bruno et al.63 give an alternative classification of kinetic
schemes to that presented here, for the case of Markovian
nonsymmetric schemes.
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