
Comment on ‘‘Path Summation Formulation of the
Master Equation’’

The Green’s function for a random walker on a lattice
that starts at time t0 � 0 at state i and reaches at time t state
j, Gji�t�, can be found by various approaches. For spatially
invariant systems, a recursion relation finds the Green’s
function in Laplace-Fourier domains in terms of the basic
input probability density functions (PDFs) [1]. For arbi-
trarily inhomogeneous bounded systems in discrete space,
the solution for the Laplace transform Green’s function
inverts the matrix of transition rates with (�s) added to the
diagonal elements (s is the Laplace transform argument).
For the general case, the elements of the inverted matrix
are not known analytically. A different approach expresses
the Green’s function as a sum over all relevant paths, e.g.,
[2]. If one chooses to sum over paths, as was recently done
when calculating the Green’s function for one-dimensional
arbitrarily inhomogeneous lattices with L states [3], asso-
ciating a combinatorial factor with each path is difficult.
Only the product of the combinatorial factor and the path
PDF in time is relevant in Green’s function calculation. In
higher dimensions, the combinatorial factor associated
with a path becomes harder to compute.

A recent Letter claims to make a progress in summing
over paths of a random walker in an arbitrarily inhomoge-
neous lattice in d dimensions [4]. We believe this claim is
unjustified; although Eq. (13) correctly expresses the
Green’s function as a sum over all possible relevant paths,
one cannot plug in it Eq. (9) or Eq. (16) for a general case,
and perform a summation, because combinatorial factors
for paths are not given, or discussed, in [4]. (In this
Comment, we refer to the numbered equations that appear
in [4].) (The only case for which one can calculate the
Green’s function by summing over paths without worrying
about combinatorial factors is for a lattice with two states,
where each path appears once.)

To illustrate our point, and to highlight the way to solve
the problem in 1d, consider a 1d four-state lattice with
transition rate kji connecting state i to state j, and Ki �P
jkji. Say that the Laplace space Green’s function �G41�s�

is required. Using Eq. (13), �G41�s� �
P
fx�n;s�g

�Q
n�x�n; s��.

How to find expressions for the �Q
n�x�n; s��? For this, ideas

given in [3] are used and briefly sketched below. First, the
values n � 0, 1, 2, do not contribute to the sum, because
the random walker must perform at least 3 jumps to reach
state 4 from state 1. (Similarly, all even values of n do not
contribute to the sum.) For n � 3, the path x�3; s� is just the
path of direct transitions, and it is denoted by x�3; s� �
�1; 2; 3; 4; s�. Thus, �Q

3�x�3; s�� is obtained using Eq. (9).
For n � 5, there are 3 distinct paths that contribute to the
ensemble of paths fx�5; s�g,

 fx�5; s�g � f�1; 2; 1; 2; 3; 4; s�; �1; 2; 3; 2; 3; 4; s�;

�1; 2; 3; 4; 3; 4; s�g;

and accordingly,

 

�Y
5�x�5; s�� � �Y

3
�x�3; s��

�
k21k12

�s� K1��s� K2�

�
k32k23

�s� K2��s� K3�

�
k43k34

�s� K3��s� K4�

�
:

The large parentheses above are defined as �h�1; s; 4�. The
next nonvanishing term in the series, �Q

7�x�7; s��, is even
more interesting, as it is built from degenerate paths;
there are 2 paths with degeneracy 2 and additionally 4
paths with degeneracy 1. �Q

7�x�7; s�� can be expressed by
the recursion relation, �Q

7�x�7; s�� � �Q
5�x�5; s�� �

�h�1; s; 4� � �Q
3�x�3; s�� �h�2; s; 4�, where �h�2; s; 4� �

k21k12k43k34
Q4
i�1�s� Ki�

�1. This sort of recursion rela-
tion holds true for every odd n, leading to �G41�s� �
�Q

3�x�3; s��=�1� �h�1; s; 4� � �h�2; s; 4��. Thus, �G41�s� can-
not be approximated by the numerator, which represents
the only path of direct transitions connecting states 1 and 4;
it is the denominator, which is built from all paths with
back transitions and their associate degeneracy, that gives
the correct decaying rates and equilibrium probability.
Finally, note that for the four-state chain, a complementary
analysis shows that the number of paths associated withQ
n�x�n; t�� scales as �1���n=2, where � (�1:618 . . . ) is

the golden ratio. This sort of complementary analysis can
be useful when extending to higher dimensions the treat-
ment given here and in [3] for 1d for calculations of
Green’s functions and related approximations.
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