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Abstract – The dynamics of classical hard particles in a quasi–one-dimensional channel were
studied since the 1960s and used for explaining processes in chemistry, physics and biology and in
applications. Here we show that in a previously undescribed file made of anomalous, independent,
particles (with jumping times taken from, ψα(t)∼ t

−1−α, 0<α< 1), particles form clusters. At
steady state, the percentage of particles in clusters is about,

√
1−α3, only for anomalous α,

characterizing the criticality of a phase transition. The asymptotic mean square displacement per
particle in the file is about, log2(t). We show numerically that this phenomenon of a dynamical
phase transition is very stable, and relate it with the mysterious phenomenon of rafts in biological
membranes, and with regulation of biological channels.

Copyright c© EPLA, 2011

Introduction. – File dynamics (sometimes called,
single file dynamics) is the diffusion of N (N →∞) iden-
tical Brownian hard spheres in a quasi–one-dimensional
channel of length L (L→∞) [1–19], such that the spheres
do not jump one on top of the other, and the average
particles’ density is about fixed. The most well-known
statistical property of this process is that the mean square
displacement (MSD) of a tagged particle in the file follows,
MSD≈ t1/2. Indeed, file dynamics were used in model-
ing numerous microscopic processes [20–26]: the diffusion
within biological and synthetic pores and porous mate-
rial [20,21,25], the diffusion along 1D objects, such as
in biological roads [26], the dynamics of a monomer in
a polymer [22], etc. Nevertheless, in real files, one, or
several, of the conditions defining the basic file may break
down. Studies of generalizations of basic files show a rich
spectrum of properties. For example, when the particles
can bypass each other with a constant probability upon
encountering [9], an enhanced diffusion is seen. When
the particles interact with the channel, a slower diffu-
sion is observed [16]. For Brownian files with an initial
particles’ density law that is not fixed, the diffusion is
enhanced [10]. Moreover, in heterogeneous files with diffu-
sion coefficients drawn from a density that diverges like a
power law around the origin, slower dynamics are almost
always obtained [12–14]. (See part A in the supplementary
material (SM), presented in [27], for further mathematical
description on the files introduced in this paragraph and
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in the next one.) Generalizations of the basic file are
important since these models represent reality much more
accurately than the basic file.

The model. –

Anomalous files of independent particles. Only
recently, files that are anomalous were studied [17,18]; in
such files, the jumping times of the particles are taken from
a jumping time probability density function (PDF) of the
form: ψα(t)∼ t−1−α, 0<α< 1. In [16], it was shown that
in renewal-anomalous files, were all the particles attempt
a jump together, theMSD scales as the MSD of the corre-
sponding Brownian file in the power of α. Here, we study
previously undescribed anomalous files made of indepen-
dent particles. In such files, a random anomalous time
is independently assigned for each particle. The fastest
particle attempts a jump, and then, all the random times
are adjusted. Finally, the particle that attempted jumping
receives a new random time. This system has N indepen-
dent anomalous clocks, where a renewal-anomalous file has
only one clock. This is the origin for very different dynami-
cal behaviors: Since the clocks are anomalous and indepen-
dent, the particles are further connected in space, causing
further slowness, even relative to renewal-anomalous files.
Mathematically, the reason is that at large times, the
order of the jumps that enables motion is exponentially
small (with the number of particles that try moving).
The basic manifestation of this is a logarithmic scaling
with the time of the MSD per particle, MSD∼ ln2(t).
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Fig. 1: Nine trajectories from an anomalous file of independent particles plotted as a function of the cycle index, t; note that the
actual time obeys the formula: t = t1/α. Particles are initially positioned at the integers, here shown particles located initially
in the range, 122–130. In the simulations, N = 501, Δ= 1 (the initial distance among particles), D= 1 (the diffusion coefficient
of the particles), dt= 0.13, and the jumping distance obeys,

√
2D dt(2q−1), where q is a random number uniform in the unit

interval. (Here, we use units without dimensions.) The upper panels show trajectories for α= 9/10 and the lower panels for
α= 1/10. Left panels show high-resolution trajectories at the initial stage of the process. Right panels show trajectories at low
resolution at the last third of the simulation (we plot the trajectory every seven thousand cycles). Trajectories in a cluster look
in this plot as one trajectory. Clearly, the attraction’s strength among trajectories increases when α decreases. This is evident
at short times and at large times. We also show the MSD for two values of α with fitting functions taken from eq. (3), on a
square-root logarithmic scale.

Moreover, and even more exciting, we find a unique
phenomenon in such files: the formation of clusters.
We characterize the criticality of this dynamical phase
transition showing that the number of particles in clusters
at steady state follows,

√
1−α3. We also prove in many

numerical tests that this phenomenon is indeed stable.
Finally, we also suggest a link of this phenomenon with
the mysterious phenomenon of rafts in membranes [24],
and with the regulation of biological channels [25].

Results. –

Scaling law for anomalous files of independent particles.

Here, we study anomalous files of independent particles
using scaling laws. Firstly, we write down the scaling law
for the mean absolute displacement (MAD) in a renewal
file with a constant density [10,14,18]:

〈|r|〉 ∼ 〈|r|〉free /n. (1)

Here, n is the number of particles in the covered length
〈|r|〉, and 〈|r|〉free is theMAD of a free anomalous particle,
〈|r|〉free ∼ tα/2. In eq. (1), n enters the calculations since
all the particles within the distance 〈|r|〉 from the tagged
one must move in the same direction in order that the
tagged particle will reach a distance 〈|r|〉 from its initial
position. Based on eq. (1), we write a generalized scaling
law for anomalous files of independent particles:

〈|r|〉 ∼
〈|r|〉free
n

f(n), 0< f(n)< 1. (2)

The first term on the right-hand side of eq. (2) appears
also in renewal files; yet, the term f(n) is unique. f(n)
is the probability that accounts for the fact that for
moving n anomalous independent particles in the same

direction, when these particles indeed try jumping in the
same direction (expressed with the term, 〈|r|〉free/n),
the particles in the periphery must move first so that
the particles in the middle of the file will have the free
space for moving, demanding faster jumping times for
those in the periphery. f(n) appears since there is not
a typical timescale for a jump in anomalous files, and the
particles are independent, and so a particular particle can
stand still for a very long time, substantially limiting the
options of progress for the particles around him, during
this time. Clearly, 0< f(n)< 1, where f(n) = 1 for renewal
files since the particles jump together, yet also in files of
independent particles with α> 1, since in such files there
is a typical timescale for a jump, considered the time for a
synchronized jump. We calculate f(n) from the number of
configurations in which the order of the particles’ jumping
times enables motion; that is, an order where the faster
particles are always located towards the periphery. For
n particles, there are n! different configurations, where
one configuration is the optimal one; so, 1n! � f(n). Yet,
although not optimal, propagation is also possible in many
other configurations; when m is the number of particles
that move, then, f(n)∼ (nm)(n−m)! 1n! , where (nm)(n−m)!
counts the number of configurations in which those m
particles around the tagged one have the optimal jumping
order. Now, even when m∼ n/2, f(n)∼ e−n/2. Using in
eq. (2), f(n)∼ e−n/n0(n0 a small number larger than 1),
we see,

MSD∼
(

α

n0

)2

ln2(t). (3)

(In eq. (3), we use,MSD∼MAD2.) In fig. 1, we show that
results from simulations coincide with eq. (3), for various
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Fig. 2: pn(t, α), its normalized form and ξ(α). (A) pn(t, α) as a function of the event index t, for 10 values of anomalous α,
α= 0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, 0.1, 0.024, for the third (from the bottom) and on curves, respectively, and the control
curves: an anomalous file with α= 3.37 and a normal dynamics file (these curves fluctuate around, pn(t, α) = 0.1). The
clustering phenomenon is unique for anomalous files of independent particles, representing a phase transition depending
on α. (B) Normalizing pn(t, α) with its asymptotic value ξ(α), all anomalous curves follow pretty much the same route.
(C) ξ(α) with its fitting curve, ξ̃(α). As α goes to zero, about 97% of the particles are in clusters.

values of α. Equation (3) shows that asymptotically
the particles are extremely slow in anomalous files of
independent particles.

Numerical results of anomalous files of independent

particles. For understanding this slowness even better,
we perform extensive numerical simulations. In the simu-
lations, N = 501, and the initial density is constant with a
distance of unity among the point particles. At the edges,
reflecting boundaries are positioned at points, ±253. (We
use units without dimensions all over). Random jumping
distances are distributed uniformly in about a unit interval
centered on the origin, and the reflection method is used
in moving the particles, namely, a jump is made and the
particles’ order remains. Simulations were performed for
seven values of α in the range of anomaly, 0.024� α� 0.9
(in this range, the average of ψα(t) is infinite). In addi-
tion, we performed two control simulations: one for a file of
independent particles with α= 3.37 (that has a finite aver-
age for ψα(t)) and one for normal dynamics. Trajectories
obtained from simulations are shown in fig. 1 as a function

of the number of the cycles t, where a cycle contains N
attempts of jumping. The trajectories exhibit the phenom-
enon of clustering: namely, particles attract each other and
then move pretty much together. It is also evident that
the value of α and the number of cycles determine the
degree of clustering in the system. We note that the results
presented here are independent of the value for N and are
qualitative identical for files with finite size particles (see
part B of the SM, presented in [27]).
Characterizing the formation of the clusters, fig. 2(A)

shows pn(t, α): the percentage of particles in a cluster
at t for a particular α (namely, the number of particles
in clusters above the total number of particles). Here,
when adjacent particles are at a distance not larger than
0.1, they are considered clustered. The curves height
depends on α, yet when normalizing pn(t, α) with ξ(α)
(≡ pn(t→∞, α)), the curves pretty much coincide with
each other (fig. 2(B)). (In action, ξ(α) is the average of
pn(t, α) calculated from the last 10% of the trajectory.)
ξ(α) is shown in fig. 2(C) with the optimal (4-parameter)
fitting function, ξ̃(α) = 0.98(1− ( α0.99 )3.09)0.537− 0.028.
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Fig. 3: pc(t, α), π(α), and Sc(t, α) and, χ(α). (A) pc(t, α) as a function of the event index t, for 4 values of anomalous α,
α= 0.7, 0.5, 0.3, 0.024, counting from the top curve. The percentage of clusters is smaller when α is small, since the clusters are
larger at small α. (B) π(α), the steady-state value for the number of clusters in percentages is shown with its fitting curve, π̃(α).
As α→ 0, the percentage of clusters is 3%. (C) Sc(t, α) as a function of the event index t, for the 4 values of anomalous α in
(A), counting from the lower curve. The average size of a cluster is large when α is large. Here, the average cluster can contain,
momentarily, about 10% of the particles. (D) χ(α), the steady-state value for the average size of a cluster (in percentage) with
its simple fitting curve, ξ̃(α). As α→ 0, the average cluster’s size is 33.

This fitting function is of the form of

ξ̃(α)≈
√

1−α3. (4)

When α→ 0, almost all particles are in clusters. The
fluctuations in ξ(α) are about 5% for α= 0.9, and are
about 0.5% for α= 0.024 (with about a linear interpo-
lation with α). The fluctuations in ξ(α) represent the
motion of particles among clusters. Namely, for a small
value of α at steady state, the particles in a cluster
move together, where at larger values of α, about 5%
of the particles diffuse among clusters. Since clustering
occurs only for anomalous α, ξ̃(α) describes the criti-
cality of a phase transition. Indeed, ξ̃(α) has a typical
form for a scaling function in critical phenomena [28]
(see the next paragraph for further discussion about this
point). Complementary information about the clustering
is obtained from two additional functions: pc(t, α) and
Sc(t, α). Figure 3(A) presents pc(t, α): the percentage of
clusters (measured in terms of the number of particles)
at t for a particular α. For relatively large values of α,
the number of clusters is also large (yet, the clusters
are smaller in size). The fluctuations in the number
of clusters is also larger when α is larger. This is in
accordance with the behavior of pn(t, α). Figure 3(B)
shows π(α) (≡ pc(t→∞, α)) vs. α for all anomalous
values of α. The optimal fitting function has the form
π̃(α) = 0.78(1+ ( α1.19 )

2.49)0.42−0.75. π̃(α) follows closely
a function of the form

π̃(α)≈ 0.6
(

√

1.7+α3− 1.25
)

. (5)

ξ̃(α) and π̃(α) have complementary physical interpreta-
tion, seen in their scaling laws following (about),

√
1±α3.

ξ̃(α) quantifies particles in clusters, where the same
number of particles can exist for a small or a large number
of clusters. π̃(α) simply counts clusters, and can have the
same value when these are either small clusters or large
clusters. Importantly, when clustering occurs, we see a
small number of large clusters as α becomes smaller, where
in a system without clustering, we may see about 10%
of small clusters. Figure 3(C) presents the average size
of a cluster, Sc(t, α) (≡ pn(t, α)/pc(t, α)). Here, fluctua-
tions are larger when α is small. Figure 3(D) shows χ(α)
(≡ Sc(t→∞, α)), the asymptotic value of a cluster’s size,
with its simple fitting function

χ̃(α) = (33−37α)/N. (6)

Interestingly, the average size of a cluster is limited
with about 33 particles when α→ 0, where clustering
disappears when α→ 1, further quantifying the phase
transition.

Discussion and conclusions. –

Characterizations of the clustering. Firstly, we recall
that slowness is expected in files of anomalous independent
particles since the order of the jumps that enables motion
is exponentially small (with the number of particles that
try moving) and the dynamics are without a typical
timescale. For further explaining the clustering, we look
on the actual values of the jumping times of the particles
after the process has been going on for a while; see fig. 4.
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Fig. 4: The band of jumping times (τ) after about 7 hundred thousand cycles for a system of about 500 point particles for
several values of α on a log-linear scale.

(These are the quantities discussed in the derivation of
the MSD.) It is clear from fig. 4 that when α decreases the
typical value for the jumping time increases (here, the
typical time is the jumping time of most of the particles).
The interesting issue here is that when α decreases there
is a phenomenon that only a few particles are significantly
faster relative to all the others. This tells the story
of the clustering and the phase transition: when one
particle jumps over and over and over again, it clusters
the particles in its vicinity, since when only a particular
particle moves repeatedly several times, it closes the gap
among the particles in its vicinity, such that they are
eventually clustered.
How can we explain the form of the fitting functions?

Firstly, we note that the fitting function of ξ(α) has a
standard form for a scaling function at criticality of a
phase transition [28]: f(α)∼ (1−α)µ (where a function
in α can replace α in generalizations), and χ(α) and π(α)
pretty much follow from ξ(α). π(α) is complementary to
ξ(α), since it has such a physical interpretation, and χ(α)
is the ratio of the previous ones.
Now, for further supporting the form of the fitting

function of ξ(α), we calculate the PDF of slowest jumping
time when there are n+1 jumping times in the band:

fs.t.(t;n+1) =ψ(t)

(
∫ t

0

ψ(s) ds

)n

∼ t−1−αe−nt−α . (7)

We emphasize the following three points: 1) fs.t.(t;n+1)
is very small for times smaller than, t∗ ≡ n1/α, that is the
time when the argument of the exponent e−nt

−α

is unity.
2) t∗ is the typical timescale for most of the particles in
the file, in the limit of many cycles. This is indeed seen
in fig. 4. The reason is very simple: after many cycles,
most of the particles are extremely slow, since only the
fast ones move and after several jumps the anomalous

properties of fs.t.(t;n+1) “assign” the particle a very
slow jumping time. 3) When calculating the first and the
second moments of fs.t.(t;n+1) in the range t� t

∗, we
find, 〈t〉 ∼ n1/α−1 and 〈t2〉 ∼ n1/α−2. This should reflect
the properties of the fast particles until the time t∗. It
is evident that a transition occurs in the second moment
when α> 1/2: 〈t2〉 vanishes when α> 1/2, yet scales with
n when α< 1/2. Namely, for α< 1/2 many of the fast
particles are slower than t∗, yet when α> 1/2, most of
the fast particles are indeed faster than t∗. This behavior
is indeed seen in fig. 4: when α< 1/2 fewer and fewer
particles are seen in the range t� t∗, yet when α> 1/2 we
see many particles in this range. This is the origin for many
small clusters when α> 1/2 and only a few clusters, yet
larger, when α< 1/2. ξ̃(α) and π̃(α) capture this property.

Anomalous files, rafts and channels. Now, we also
find that clustering is seen in anomalous files embedded in
two-dimensions, creating a network of isotropic files, like
streets and junctions. Indeed, this system is a generaliza-
tion of a 1-dimensional file, and is defined with two free
parameters: the percentage of intersections (without direc-
tional preference in intersections) and the length of the
interval until an intersection occurs. We study files that
intersect each other for 1% every interval of 10 (see part C
in the SM, presented in [27], for a comprehensive analy-
sis). Among other results, we find that in such a system
50% of the particles are in clusters when α→ 0. Indeed,
the results are sensitive to the branching parameters: when
branching occurs in smaller intervals, clustering decreases,
and we can speculate that when diffusion happens in two
dimensions (not in a network of one-dimensional files), the
clustering phenomenon is not observed when the density
is reasonable (not too high). This is in accordance with
known results showing that the slower diffusion so typical
for a particle in a file in one-dimension does not hold for
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diffusion of hard particles in two-dimensions, where in such
a system a standard diffusion is seen (when the density is
not too high). Still, we have chosen here reasonable para-
meters for the branching: the average size of a jump is
0.25, and the branching occurs every interval of 10; this is
not too small an interval so that branching indeed has a
role (seen also in the results), still the branching happens
after frequent enough jumps and the clustering is indeed
seen.
An isotropic network of files embedded in two-

dimensions enables relating the clustering with rafts:
a raft in a (two-dimensional) membrane is a dense
patch of specific lipo-molecules [24]. The mechanism
of the formation of these patches is still not clear, yet
it is known that rafts do not largely occur due to an
electrostatic attraction. We think that the phenomenon of
clustering in anomalous files of independent particles can
explain rafts in membranes: given that the lipo-molecules
diffusion is anomalous (anomalous diffusion is common
in membranes), they will form rafts, since diffusion in
biological membranes is describable with the model of an
isotropic network of files in two dimensions.
Finally, we expect that the clustering phenomenon is

universal and holds in a wide range of external conditions,
since the diffusion coefficient of the particles does not
affect this phenomenon, yet α, the only other external
parameter here, is the control parameter. Since clustering
is expected to be universal, it may be used in regulating
biological channels, an important topic in biophysics,
e.g. [25]; this is achieved when controlling the phase of the
anomalous particles in the channel (clustered or diffusing),
using one of two possibilities: changing α (smaller or larger
than 1) or controlling the synchronization of the particles
(synchronized or independent, with anomalous α).
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