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Solving single molecules: filtering noisy discrete data made of photons 

and other type of observables 

 Ophir Flomenbom, Flomenbom-BPS Ltd, 19 Louis Marshal St., Tel Aviv, Israel 66268 

Abstract In numerous systems in biophysics and related fields, scientists measure (with very 

smart methods) individual molecules (e.g. biopolymers (proteins, DNA, RNA, etc), nano – 

crystals, ion channels), aiming at finding a model from the data. But the noise is not solved 

accurately in not so few cases and this may lead to misleading models. Here, we solve the noise. 

We consider two state photon trajectories from any on off KS: the process emitting photons with 

a rate γon when it is in the on state, and emitting with a rate γoff when it is in the off state. We 

develop a filter that removes the noise resulting in clean data also in cases where binning fails. 

The filter is a numerical algorithm with various new statistical treatments. It is based on a new 

general likelihood function developed here, with observable dependent form. The filter can solve 

the noise, in the detectable region of the rate space: that is, we also find a region where the data 

is “too” noisy. Consistency tests will find the region’s type from the data.  If the data is ruled 

“too noisy”, binning obviously fails, and one should apply simpler methods on the raw data and 

realizing that the extracted information is partial. We show that not applying the filter while 

cleaning results in erroneous rates. This filter (with minor adjustments) can solve the noise in any 

discrete state trajectories, yet extensions are needed in “tackling” the noise from other data, e.g. 

continuous data and FRET data.  

        The filter developed here is complementary with our previous projects in this field, where 

we have solved clean two state data with the development of reduced dimensions forms (RDFs): 

unique models that are canonical forms of two state data, and with the development of a 

statistical and numerical toolbox that builds a RDF from finite, clean, two - state data. Thus, only 
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the combined procedures enabling building the most accurate model from noisy trajectories from 

single molecules  

 

I. Introduction.-  

The system.-        Nowadays, scientists measure smartly many processes in biology, chemistry 

and physics at a level of individual molecules, enabling (in principle) extracting information that 

was not accessible in the past about microscopic processes. Yet, finding the model from the 

signal is complicated. If the noise is not solved accurately in data from individual molecules, 

misleading models are reported. In this paper we solve (“tackle”) the noise in discrete (m state) 

data.  

        When talking about relevant experiments and processes, we list: * the passage of ions and 

biopolymers through individual channels [3 - 6], * activity and conformational changes of 

biopolymers (including fluorescence resonance energy transfer (FRET), atomic force microscopy 

(AFM) and other techniques) [1 - 2, 7 - 21, 59], * diffusion of molecules [22 - 25], * blinking of 

nano-crystals [26-29], etc.  

        Signals are time trajectories made of several discrete values, or states, where a popular 

example is of on-off trajectories (this is also the simplest example): trajectories that are made of 

on and off periods (also termed residence times or jumping times (JT); see Fig. 1A-1B). 

Extensions include FRET trajectories and even continuous trajectories. From a noisy trajectory, 

one aims at finding the mechanism that can generate the observed process, has a physical sense 

and can supply scientific insights on the observed process. In many cases, we say that the model 

of the observed process is a multi – substate, multi - state Markovian kinetic scheme (KS). On – 

off KSs are popular [30-45], see Fig. 1E. The KS can stand, for example, for one of the following 

physical realizations: a discrete conformational energy landscape of a biological molecule, steps 
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in a chemical reaction with conformational changes or environmental changes, quantum states, 

etc.  

        The aim is therefore building the mechanism from the noisy data. In many projects, we can 

solve the system only when solving data from individual entities, since other (experimental or 

numerical) techniques are missing or are not so informative. The case of enzymes is such an 

example. If the noise in the data is not filtered accurately when analyzing the data (due to 

ignoring the noise, or assuming that the noise is small, or using too simple filters), misleading 

models, partial and questionable conclusions are reported. Let me present an example: in [11], 

the authors did not filter the noise and used a binning method when building from the data the 

observable. They started with the raw data (photon arrival times), binned every following 100 

photon arrival times, calculated the average, and used a specific model when building (from this 

quantity) a time dependent distance among residues in a protein. What are the results when we 

bin 16 photons, 39 photons, 333 photons, in the computations of the rate?? What with taking care 

about background photons?? What are the model independent quantities that we can extract from 

the data?? All these crucial points are not addressed in that project [11]. The simple binning 

method used in [11] might lead to misleading conclusions. We show here that not applying the 

most accurate filter on the raw data in a much simpler case leads to misleading results. [11] is an 

example for a problematic “filtering” of the data (the authors actually did not filter the noise in 

that project). But in not so few projects there are problems with solving the noise, and sometimes 

also issues with solving the clean data (several examples about this are presented in [29]. See 

also the discussion in the next part about unique mechanism and the data). Another important 

issue: very few in this field appreciate the importance of solving the noise while using the 

properties of the derived clean data. This is one of the concepts in this project: we build new 

algorithms that filter the noise while using the likelihood of the obtained clean data. 
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I. 2. Solving the noise: Known methods and main difficulties.- There are many methods that 

scientists use when solving data from individual molecules [30-58]. But existing methods treat 

mainly trajectories without noise or simple noise forms. In [38] we showed how we can utilize 

the information in the clean data (using canonical forms). In this regard, we showed that there are 

not so few projects with results that are not unique [38]. Here we show: “too” simple noise 

analysis leading to misleading results. And such are not so rare. We solve cases where binning 

fails, where binning is used extensively in this field. 

 

I. 3. Canonical models.- There is a problem in this field that was noticed since the 80s [30, 36, 

40, 41, 42] and recently solved [37, 38, 39]: a multi substate on-off KS is not uniquely obtained 

from (even a clean & very long) two - state trajectory, and thus we must first construct a 

canonical form from the data for an accurate analysis (otherwise the result is just one option from 

many other possibilities that are equivalent statistically). Only one canonical form is built from 

the data. We have developed very efficient canonical on - off mechanisms termed reduced 

dimensions forms (RDFs) [37, 38, 39]: these are mathematical mechanisms that are (relatively) 

simply built from clean data yet also from a kinetic scheme. These mechanisms have many 

advantageous over other methods in accuracy and robustness (these are listed in our papers [37], 

[38], [39]). Our new filters will use RDFs also in tackling the noise  

   

I. 4. The idea of the filter.- The questions are: How can we solve correctly the noise in the 

data?? How can we extract all the information from the noisy data?? How can we use the 

information in the noisy data and finding the correct model from the data?? In answering these 

questions, here we write a filter (a numerical algorithm) based on new numerical and statistical 

treatments (see codes at, http://www.flomenbom.net/codes_project12.html) and a new general 

http://www.flomenbom.net/codes_project12.html
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likelihood function in this field: we suggest a general new concept: writing the likelihood 

function in a way that involves the raw data, and the derived clean data, see Eq (3*). In advanced 

filters, we express the clean data with our recently developed canonical forms, RDFs [37,38,39]. 

[In fact, we suggest expressing the term involving the correlations among events in the clean data 

with the appropriate reduced dimensions form, see Eq. (3*)]. We show here that this concept 

works in solving two state noisy photon trajectories from various kinetic schemes. We find that 

the specific likelihood form involves a combination of (a) the photons (the observable), (b) the 

derived clean data presented with on and off durations and (c) on off correlation terms. In most 

cases, the best results are seen when all these terms in the likelihood function are included in an 

unbiased way after a special normalization causing all terms having an equal contribution. (In 

fact the filter is very sensitive to the form of the likelihood functions. The form of the likelihood 

function determines whether the filter will work rather than fail.) We show that this algorithm is 

crucial for cleaning accurately the noise (various other variants lead to wrong results). Let me 

also say that the filter showing that using the clean data in the analysis of the noisy data is 

crucial, otherwise the results are not accurate.  

        In the next part of this paper, we first talk about the analysis of the clean data (also 

presenting RDFs), and then list noise-sources in measurements. In the main part of this chapter, 

the new filters are presented with results about several dozen systems. The third part concludes. 

 

II. Solving noisy trajectories  

II. 1. Analysis of clean trajectories.- We start with a short description of our toolbox for 

solving clean trajectories [37,38,39] 

II. 1. 1. The information content in the data.- Here, we assume that the data is infinite long and 

without noise. Therefore, we can construct directly from the data any jumping time (JT) 
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probability density function (PDF). These include: x(t) and x,y(t1,t2), where, x,y=on,off. x(t) 

gives the probability density that an event is state x lasts time t. x,y(t1,t2) gives the probability 

density that an event in state x lasts time t1 and the following event in state y lasts time t2. These 

JTPDFs are expressed with exponential expansions:   

            
      

         (1) 

and,  

                        
              .     (2) 

on(t) and off(t) are constructed from trajectory 1A (Fig. 1A) and are shown in Fig. 1C & 1D, 

respectively.  

II. 1. 2. Constructing a mechanism from the clean data.- Assuming x(t) and x,y(t1,t2) are 

known, we focus on constructing a KS from these JTPDFs. For this, we construct the likelihood 

function,     ,  

                                 ,                             (3)      

and maximize )(Θl  with respect to Θ , where Θ  is the set of rates in the KS. In Eq. (3), the 

index i represents the i
th

 cycle in the actual cleaned on - off data. We perform the maximization 

with constraints: the coefficients in Θ  should also reproduce the coefficients of x(t). Yet, 

finding the KS from x(t) and x,y(t1,t2) is difficult. The reasons are: (1) the number of the 

substates in each of the states, Lx (x = on, off), is usually large, and (2) the connectivity among 

the substates is usually complex. Yet, the data has limited information content, and so not all the 

details regarding the KS are obtainable from the data. In addition, there are many local solutions 

in the landscape of the coefficients [38], many of these solutions are very different than the 

correct KS. We can average over many initial conditions and this is an exhaustive search since 

convergence is not guaranteed in the space of coefficients. (3) A fundamental difficulty in 
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finding the correct KS arises from the equivalence of KSs; namely, there are a number of KSs 

with the same trajectory in a statistical sense [33 - 35, 37, 38, 39].  

   These three issues form a problem when solving the data.        We solve these issues with 

canonical (unique) forms [37, 38, 39]. The space of KSs is mapped. The new space in made of 

canonical forms. A given KS is equivalent with a unique canonical form, yet several KSs can 

have the same canonical form. KSs with the same canonical form are equivalent, and cannot be 

discriminated based on the information in (also) an ideal two - state trajectory. We have derived 

new canonical forms: reduced dimensions forms (RDFs) [37, 38, 39]; see Fig. 1F for an 

example. RDFs are not Markovian models since the connections in RDFs have multi - 

exponential JTPDFs. The advantageous of RDFs in solving the problem of relating a model with 

the time on - off trajectory over other approaches are numerous [37,38,39]: RDFs are physical 

models, accurately constructed from the data, accurately related with a set of KSs, etc.  

        We can simply construct the RDF from x(t) and x,y(t1,t2). First, we note that the rates in the 

exponential expansion of the JTPDF x(t) are the same as those in the exponential expansion of 

the JTPDFs, x,mn(t); x,mn(t) is the JTPDF connecting substates nx → my in the RDF, and follows: 

             
         

      .      (4) 

Then, we note that the rank Rx,y ( yx  ) of the matrices σx,y that appear in the double exponential 

expansion of x,y(t1,t2)  gives, in most systems, the number of substates in state y in the RDF. 

Finally, the coefficients in {αx; αy} are found when maximizing the likelihood function, Eq. (3), 

when built from the RDF. 

 

II. 1. 3. Constructing the RDF from finite length ideal data.- Finding the most reliable RDF 

from a finite trajectory, even without noise, is a real challenge; the reason is that x(t) and 

x,y(t1,t2) are not known, and we need smart numerical procedures for extracting these PDFs from 
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finite data. We have developed a set of procedures, forming a toolbox, for constructing reliably 

the RDF from finite data [38,39]. The toolbox executes the following steps: * The rates and the 

coefficients in the exponential expansion of the JTPDF x(t)s are found with fitting, using a new 

procedure based on the Padé approximation method. * The ranks Rx,ys of the matrices σx,ys are 

found from the matrices x,y(t1,t2)s; any particular x,y(t1,t2) has the same rank as of the 

corresponding σx,y, yet, the rank of x,y(t1,t2) is much more accurately obtained from finite data. 

We have developed a new numerical procedure that computes the rank of the x,y(t1,t2)s from the 

data. * The matrices σx,y are estimated from the data while constructing special JTPDFs (of the 

total of following JTs and of the total of the square root of following JTs) with a new numerical 

procure * The last step uses Eq. (3) when constructed from the RDF.  

     Using the toolbox, a RDF is constructed from the data fairly accurately, and importantly, 

much more accurately than other mechanisms. Once the RDF is constructed, we can express this 

with a set of KSs. The set usually contains the most possible KSs that are associated with the 

constructed RDF. Choosing from the set a particular KS requires additional information  

 

II. 2. The noise in the data.- The problem of dealing with noise is an unsolved issue in the 

context of data from individual molecules. In this paper, we suggest a filter that solves a 

particular system (two state photon data and generalizations of any discrete data), yet also a 

general method that we can use on any data. In this part, we present all the main issues that are 

related with noise in two-state data and other data - types, where in part II. 3 we present the filter 

for solving noisy data.   

II. 2. 1. The type of the external noise.- The type of the external noise depends on the 

measurement’s type. This information is used in the analysis of the noisy data. Examples include 

Poissonian noise and Gaussian noise. In particular: in measurements that collect photons, the 
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time among following photons is monitored. A simple model for generating a photon two - state 

trajectory is shown in Fig. 2A. The on - off Markovian KS has transition rates on and off, 

connecting, respectively, the on substate with the off substate and the off substate with the on 

substate. Once the process occupies the on (off) state it emits photons with a rate, on (off). In 

fact, noise photons are recorded also when the process is in the on state  

        Two - state can have a Gaussian noise: this is observed e.g. in ion channel recordings. We 

generate such data while first still generating a clean two-state trajectory, u(t), yet here a (zero-

averaged with width σz) Gaussian noise z(t) is added every dt: the equation for the signal w(t) 

reads: w(t)= u(t) + z(t). 

II. 2. 2.- The strength of the noise.- Clearly, cleaning correctly the noise depends on the strength 

of the noise. Indeed, the experimentalists’ interest is designing clean measurements. Yet, in the 

analysis, we must have a way solving any value of the ratio signal/noise, and this includes a way 

identifying ‘too’ high noise levels  

II. 2. 3.- Internal noise: the issue of time resolution, detection efficiency, etc.- The noise can 

also originate from low time - resolution of the experimental devices compared with the 

measured process. Say that the fastest duration of on - off transitions   is smaller than the time 

for detecting the required amount of photons. This means that fast events can be missed. A 

missed fast on event can also originate when the number of photons that are emitted in  is the 

same as the number of noise photons in  . A missed off event occurs when the number of noise 

photons emitted in a fast off duration τ is unusually large and thus bridges two on events. Small 

detection efficiency can result in similar problems 

 II. 2. 4. Correlations in the noise.- The noise may have internal correlations, and also 

correlations with the state the process staying in. When analyzing the process, we must use the 

A B 
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fact that the noise is correlated, that is, for discriminating signal from noise, we must include the 

existence of correlations in the noise. Not doing this, lead to erroneous results.  

II. 2. 5. Using correlations in the clean data in solving noise.- when there are correlations 

among durations in the clean data, these must taken into account when cleaning noisy data. 

Again, one must use this information for seeing accurate results  

II. 2. 6.- other issues.- each issue that interferes with identifying accurately the state of the 

process from the observable is noise. For example, entities diffusing in and out the laser spot, 

fluctuating coefficients (the detection efficiency, etc.), etc. We must treat all these issues   

 

II. 3. Filtering the noise 

In II. 1 & II. 2, we have defined the problem: for solving the data in the right way while using 

RDFs, we need solving the noise in the data. Our basic new mathematical approach presented in 

part (I.4) enable us writing the likelihood function in the way: 

                                                                         (3*) 

The symbol Sigma including all observable values and all values of the derived clean data. Thus, 

the first step in the algorithm is identifying the type of the observable in ),( dobservable iP Θ . Yet, Eq. 

(3*) determining the best solution (the best identification of the observable), while maximizing 

)(Θl , with a fixed Θ . The set Θ  includes the coefficients representing (for example) the 

photons, dΘ , and those coefficients representing the derived clean data, cΘ . We find these 

coefficients from the data, namely, we write these with statistics from the data. ),(data  cclean j Θ  is 

first approximated with statistical functions. Only in an advanced step in the filtering, 

),(data  cclean j Θ  representing the model. The model is a RDF. Thus, in this scheme, we iterate 

among the identification of the photons and the identification of the best mechanism that can 

generate the clean data. Likelihood functions are frequently appearing with compensation terms 
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because there are biases in the likelihood function. Yet, the compensation terms in Eq. (3*) are 

system-dependent and will determine the strength of the filter. In addition, we can perform 

several adjustments also on the first term in Eq. (3*). In what follows, we show this while 

solving pretty complicated versions of noisy two-state photon data with the general concepts 

presented in part II. 1 & II. 2 resulting in Eq. (3*). The next step is solving higher order discrete 

data (requiring simple generalizations) and then solving FRET data and continuous data 

(requiring involved generalizations). We will also create software based on the developed 

methods 

II. 3. 1. Known statistical methods for noise-filtration.- Clearly, many authors dealt with 

solving the actual data in relevant measurements [46 - 54]. General methods that were suggested: 

the maximum likelihood technique, a maximum entropy approach, a Bayesian information 

approach. Quite a few authors dealt with part of the specific problems that were defined in II. 2  

[48 - 54]. For example, correcting for missed fast events using a modified likelihood function 

was suggested in [54] when tackling ion channel data. Such methods can appear also here, 

adjusted, when building the RDF from the data.  

        Yet, let me emphasize that not so few techniques for solving noise in two - state data are 

partial: simple thresholds and smoothing are usually applied on the binned data. Correlations in 

the noise, or among the noise and the state of the mechanism are not taken in account. In 

addition, the methods do not use correlations among following durations in the clean data when 

solving the noise. In not so few cases, the methods assume that (due to various treatments) the 

noise is averaged out and does influence the analysis. Clearly, in many cases these assumptions 

are “too” simple and may lead to misleading conclusions. There are cases where binning fails yet 

the filter presented here cleaning the noise (we show such an example in the supplementary file).   
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        Tools for solving noisy m - state trajectories, FRET trajectories, and continuous trajectories 

are sparser.      

II. 3. 2.  Cleaning noisy photon two state data.- We present here and in the next part new filters 

that solve noisy two state photon trajectories: we apply Eq. (3*) on this specific case and build 

the numerical algorithm. This containing many innovative treatments.    

        We say that the measured entity stays at its position while it is measured and that the 

detection efficiency (quantum yield, etc) is high. Still, the data is rather short and contains just 

2700 on-off cycles. (Solving diffusion is a simple extension). Indeed, finding solutions for m - 

state trajectories, FRET trajectories, and continuous trajectories is more complicated, 

nevertheless, since the filters use the basic concepts presented here, these can supply a positive 

indication about the applicability of our direction in solving also these other systems. This study 

also shows that the filter is sensitive: wrong results can be obtained when it is designed 

inappropriately. Not applying all steps in this filter (in the way found) may result in rates that are 

ten times different than the actual rates. This filter tackles issues that were not solved in the past: 

authors frequently assume that the noise is averaged out, or small, or not important and ignored 

the noise, or calculate correlations function from the raw data - averaging out most of the new 

information that is contained in data from individual molecules, and other questionable 

techniques that lead to misleading or partial results. 

        We start with the KS 2A. We set on=1/10, on=1, off=1/99, off=1/10 (all units are scaled), 

and generate clean data and photon data (Fig 2B, 2C, 2D). This design enabling having 10 

photons in any state, in a typical event, and in addition on photons are ten times faster, so in most 

cases there is a clear distinction among states. Nevertheless, in Fig 2D we show that also is such 

a simple design, there are on events that are fast with only one photon (photon 19, and photon 55 

in 2D) and when such an event happens, it looks like one long off event, rather than: off event, 
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short on, off event. Our filters designed here can solve such cases. Note also that we apply the 

filter on many sets of these rates finding the interval where results can be accurately seen. This in 

fact solves the issue of signal to noise ratio and is related with missed fast events in a general 

way.  

        The filter is built in the following way
1
:  

(1) create the PDF of the photons. Identify the two parts (on & off). We must see these parts in 

this PDF in order having the possibility of filtering the data. The intersection among the parts is a 

threshold, TrSld1.  

(2) Compute directly from the data 1/on and 1/off using TrSld1. Since there are many off photons 

left to TrSld1, we use a special correction formula: 

          
 
      
              

 
      
             

 
      
            

 
      
    . 

      is the updated value and       
 

    
. (In what follows we write      also the 

updated quantity) 

(3) build a likelihood threshold using the derived rates, 

Tr_L= 1/(1/ton-1/toff)*log(toff / ton). 

This is a second threshold, Tr_L. The likelihood threshold is obtained when setting: likelihood on 

photon equal likelihood off photon 

(4) Build a threshold for a slow on photon, TrOn3, 

TrOn3 = ton*log(Np/10). 

Np is the total number of photons. TrOn3 is slowest possible on photon in the data. 

(5) Build trajectories with averaging of order n, where n=2,…,27. We average any photon with n 

following photons.  

                                                           
1 The codes are presented at  http://www.flomenbom.net/codes_project12.html  

http://www.flomenbom.net/codes_project12.html
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(6) Build the photon PDF for each trajectory of order n (see Fig 2E). Compute the 3 thresholds in 

each n order trajectory: TrSld1 is still the intersection of the two parts of the photon PDF, Tr_L is 

obtained from the on part of the photon PDF (Tr_L is the time that maximizing the on part plus 

one standard deviation) and TrOn3 is obtained from the off part of the photon PDF (it is the time 

that maximizing the off part averaged with the intersection of the parts). See Fig 2E.  

(7) The algorithm determines each photon in each trajectory of order n. It uses the thresholds: 

following on photons are checked with the condition: at least one of the three following photons 

is smaller than Tr_L and the actual photon is smaller than TrOn3. Following off photons are 

checked with the condition: at least one of two following photons is larger than Tr_L or the 

actual photon is larger than TrSld1.  

(8) There is a correction part in the algorithm compensating on the fact that the edges photons 

(when changing states) are smoother (relative with the actual trajectory) in higher order 

trajectories  

(9) The likelihood function determining the best result. It is a form - sensitive function. We have 

found the best form here: obtain the likelihood of the photons in each trajectory, lphotons(n), 

                     
                          

                . 

Here,           is on photon number i in trajectory of order n, and similar in the off photons. The 

exponential function is extendable: the photon emission mechanism,      , can result in, e.g., a 

multi exponential function, yet,       can include other effects. We normalize lphotons(n): 

lphotons(n) → lphotons(n)/max n |lphotons(n)|. We then compute the likelihood of the obtained clean 

data (this is the part of the on & off durations), lph.(n),  

                  
                          

                .  

Here,          is on duration number i in the trajectory with averaging of order n, and 

similar in the off durations. Again, the exponential function representing the clean data 
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durations,      , is extendable, and account for any mechanism that generate these 

times. We normalize lph.(n): lph.(n) → lph.(n)/max n |lph.(n)|. The total likelihood is a simple 

combination of the two parts. Yet, we also check about correlations in the data and when such 

are seen, another term, lc(n)/max n |lc(n)|, is included in the total likelihood function (see next part 

regarding discussion). Thus, the likelihood function in this filter follows:    

                                                            (5) 

where the symbol twiddle represents the normalization specified above, and we explicitly write 

here the dependence of the likelihood function on the coefficients and n: the averaging degree.    

        The new treatments in this filter include: (A)-(B) developing the various thresholds with 

averaging of order n (C) developing the conditions in the algorithm (using the thresholds) with 

the correction-part (D) creating the special likelihood function from Eq. (3*). We emphasize that 

we can use in steps 6, 7, 8, and 9, other conditions and likelihood functions, namely, this filter is 

the basic form and we can build many related filters from this one. In fact, we show in what 

follows, several likelihood functions and several set of conditions in this basic filter, and study 

the advantages of each of these in cleaning the noise.    

Simple Filter.- Applying the filter, we see encouraging results: we are able finding on & off in 

various other cases (see table 1). For example, in the case specified above, the best result finds 

on within 23%, off within 13%, where on photons are identified correctly 83% of the time and 

off photons 97% of the time. We also find the region where the data is “too” noisy: in order 

having accurate results, we must have an average of at least 5 on photons and on is five times 

faster than off and off. Otherwise, filtering will fail. In table 1, we also talk about results from 

three likelihood functions, showing that here Eq. (5) solves the noise, where other forms fail. We 

also apply a partial filter on several cases showing that we must use the entire filtering. In a 

“partial” filter, we use a simple threshold - filter with the values, Tr_L(n) and TrShld(n), instead 
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of the conditioning parts (6, 7, 8). In both cases, the condition checked either the i actual photon 

and the i averaged photon (e.g., the condition is: photon(n,i)>= Tr_L(n) | photon(1,i)>= Tr_L(1), 

when checking an off photon with a photon - likelihood threshold). The results show 33% 

accuracy in both rates in both cases.  

   This filter solves cases where binning fails. We show this explicitly in the supplementary file. 

Advanced filter.- We apply on the data also an advanced filter, where the conditions in part (7) 

in the algorithm are changed: (***) here, the on photon - conditions are about three photons: 

either photon i is faster than TrSld1, or photon i is faster than TrOn3 with: one of the next two 

averaged photons is faster than Tr_L(n) and the other photon in the couple is faster than TrSld1. 

(***) the off photon - condition is about  five photons: (A) the i photon is larger than TrSld1 (B) 

one in three averaged photons [photon(n,i), phtons(n, i+1), photon(n, i+2)] are larger than 

TrSld1(n) (C) photon(n,i+3) is larger than TrSld1(n) and the average of the previous three 

photons is larger than Tr_L(n) (D) photon(n,i+4) is larger than TrSld1(n) and the average of the 

previous four photons is larger than Tr_L(n).  

        Table 1 also reporting on the results with the advanced filter. In various cases, the results 

are better with the advanced filter than the simple filter. This is in cases where the number of off 

photons detected is relative small, yet the difference among the average durations of on and off 

photons is a constant and large: on / off is large, and, on / off  => decreasing from a large number 

towards one. When many photons are detected, yet the difference among the average on and off 

photon times is relative small (x / x is large, and, on / off  => decrease towards one), the simpler 

algorithm is better.  

The logic in the basis of the filters.- we expect seeing many short photons in an on state and 

many slow, long, photons in the off state. In principle, a simple cut - off can discriminate on and 

off photons in a deterministic photon emission case. Yet, the emission of the photons is also a 
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stochastic process. Namely, in the on event we may see several photons that are slow and in an 

off event we may see several fast photons. The second case will occur often when the off photon 

emission PDF is exponential, where the first case is relatively rare. In particular, the probability 

that an on photon is larger than any cut - off c is given by:                
 

 
. When, 

           
     , with       and       , we have,                   . Namely, 

two consecutive slow photons signal a jump from the on state with a probability of 99.9%. In this 

way, we can choose the conditions in the algorithm. What about the off state??        

          
 

 
 is the probability that an off photon is faster than c. When,              

      , 

with           and       , we have,                     . Thus, even three fast 

consecutive off photons can appear in the trajectory with a relatively large probability. Just the 

sixth fast consecutive photons may signal on a jump from the off state. Again, we see that the 

conditions in the algorithm are adjustable depending on       . When we study the following fast 

photons until we see a slow one (in an off state), we check the average of these fast photons: the 

average should exceed (at least) the likelihood threshold (the average of m off photons is 1/γoff 

with a width of          ), and the average minus the width is much larger the likelihood cut – 

off also when m is 5 (and even smaller) in the case specified above).  

        We also emphasize that in an advanced filter that we design now, we use also likelihood 

computations when determining jumps among states.               

 

II. 3. 3.  Cleaning noisy two state photon data with correlations in the cleaned data.-  The data 

is generated from a KS with four substates: two on substates and two off states, see Fig 3A. This 

generates a trajectory with correlations among durations in the clean data. The filter presented in 

the previous part is applied also here. The only modification includes another term, lc(n),  

                                                
 
       

        .        (6) 
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Here, x,y=on,off, and i is cycle i (i’=i+1, and when x=on & y=off, i’=i),      is a 

normalization constant, and      
        . lc(n) is included in the likelihood function, 

Eq. (5), and is accounting for correlations in the data. In the likelihood function, we include a 

normalized term: lc(n)/max n |lc(n)|. This term is included when the correlation condition shows 

correlations in the clean data. The correlation condition follows:  

      
      

        
       . 

Here, x, y=on, off. The results are encouraging in the various cases checked (results about the 

eight cases are presented in table 2). Only when the correlation term is included [in a normalized, 

unbiased, way, Eq. (5)], we see accurate results. The likelihood function is presented in Fig 3B. 

At the solution that maximizes the likelihood function, we find: (1) 99% on photon identification 

and 86% off photons, (2) the average duration in the on state is found within 24%, and 45% in 

the off state (3) Correlations coefficients in durations (derived from the cleaned data) are found 

within 67%. Positive correlation condition is seen.  

         In Table 2, we present all additional results about this system. One important conclusion is 

that when the correlation signal is small (that is, smaller than 0.1, and there are cases here that 

this is also the mathematical value), a different normalization than that in Eq. (5) is better (that is, 

we find better results with another normalization). This operation normalizing each term with the 

number of events (for example, the on photon – likelihood is normalized with the number of on 

photon detected, etc) rather than with the largest absolute value (depending on n) of the term.  

  

III Concluding remarks  

Ground breaking nature of the work.- noise in the data is not treated accurately in not so few 

projects reported in the literature in this field every year. Here we show: not solving the noise 

accurately results in misleading conclusions. There are cases where binning the data fails (with 
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any noise filtration method that relied on binning) yet the filter presented here working. Solving 

the noise in relevant data will help significantly many. (A) The groundbreaking mathematical 

achievements here are the development of a new form of the likelihood function, Eq. (3*), and 

its specific forms in discrete data. We showed here that in two state noisy photon trajectories, 

this form is a combination of three terms: the photon data, the clean on off durations, and the 

correlations. Each term is normalized in a special way: in most cases, the normalization follows: 

l*(n)/max n |l*(n)|. There are cases where we normalize with the specific number of events per 

term. We see in preliminary studies of a different filter that the likelihood function should also 

contain specially designed compensating terms in order having accurate results (B) The 

uniqueness in the statistical and technical fronts is the algorithms’ forms containing several new 

treatments. (C) the new mathematical methods and numerical algorithms developed here 

combined with our previous results in this field, will enable us create software. This is an 

important part in this project continuation. Further related filters will appear in future 

publications.  

Further research.- The filter introduced here cleans the noise. Once we have the clean data, we 

can use our toolbox of finding the model from clean data [38] [see also the part (II. 1)]. Even 

before, we can apply another filter that uses the results from the clean data of the first filter. We 

are about finalizing such a filter. This filter is used on correlated data. It uses the data, the 

averaged data, the three thresholds, plus another threshold: the upper bound when two following 

on photons are slower than TrSld1. The idea here is using the various thresholds while 

determining the photon’s type. This filter first builds groups of following on photons and off 

photons depending on TrSld1. Then, the type of each group is updated depending on a set of 

conditions involving the thresholds and the local types of photon groups. There are also cases 

where we must compute the local likelihood of three following groups (we check all eight (on - 
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off) possibilities), and choose the case with the maximal likelihood.  This filter is classier since it 

uses explicitly the correlations in the data and its design is more complicated (the filter uses local 

information on several groups when determining the type of the group and thus is based on 

correlations). We can apply this filter in an iterative way (the thresholds are updated after the 

filter is applied, and the filter is used again until convergence is seen). Tackling other trajectory – 

types will demand further development. 

        We also plan collaborating with experimentalists when tackling the noise with the new 

filters: we will solve trajectories that measure the dynamics and activity of three 

glycosyltransferases [60] with experiments involving single molecules techniques (AFM, FRET 

and other spectroscopic methods). This collaboration will help creating stable filters. The 

experimentalists are: Ramón Hurtado Guerrero, Angel Orte, and Peter Hinterdorfer  
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Figure caption 
FIG 1 A segment of a clean two-state trajectory (A), the noisy data (B), on(t) (C), off(t) (D), a KS 

(E) and its corresponding RDF (F). Trajectory A is generated when simulating a random walk in 

KS 1E, and adding a zero mean Gaussian noise for every element of the clean data, with a 

variance,  σz=37/100 counts/bin. on(t) and off(t) are shown, on a log-linear scale, in panels C & D, 

respectively. The KS 1E has Lon=2 (squared substates), Loff=2 (circled substates), and irreversible 

transitions. For using the KS (e.g. for generating the data, and for fully constructing the RDF 

from it) we assign numerical values for the connections among substates in the KS (the 

connections are termed reaction rates or transition rates or kinetic rates). The RDF is obtained 

from the KS with a clear - defined mathematical mapping developed in [37].   

 

FIG 2 A KS with a mechanism of photon emission (A), the clean on-off trajectory (B), the binned 

data (C), the photon trajectory (D),  and log linear plot of the steady state histogram of photons 

(E). In A, a curly arrow indicates on the emission of photons and a full arrow is a transition rate. 
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The rates obey: on=1/10 and off=1/99, on=1 and off=1/10 (scaled units). The binned trajectory in C 

is very difficult to work with. The photons in D are plotted in the order detected, where on (off) 

photons are in red (green). The algorithm is applied on this trajectory. The histogram in E is the 

photon PDF in order n=8. Its two parts are clear  

 

FIG 3 The data was generated from the KS A with the following rates (x,21 connecting substates 

1 in x and 2): off,21 =0.85/99, off,11=0.15/99, off,12=0.85/499, off,22=0.15/499, and, on,21 =0.85/9, 

on,11=0.15/9, on,12=0.85/99, on,22=0.15/99. Once the process is in any of the off substates, it emits 

photons with a rate, off=1/10, where when staying in the on substates, photons are emitted with 

a rate, on=1. The likelihood function is presented in B, on a log linear scale. Here, the maximal 

likelihood value is when n=12 
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Table 1 The results when filtering the data from the simple mechanism in Fig 2A: on & off in terms of the real values, 

and the percentage of correct determination of the type of the photon. We checked the results with three likelihood 

function. The results are from likelihood function 3 (unless otherwise is indicated). Likelihood 1: the normalization of the 

function is performed with the number of cycles. The results are like in case 3, since here the main contribution in the 

likelihood function is from the photon - likelihood. Likelihood 2: every term in the likelihood function is normalized with 

the number of events in the specific Σ. Here, in most cases the likelihood in an increasing function of n resulting in 

relatively large rates. There are cases where we see a maximal value at an intermediate n resulting from the patterns of the 

detection probability: the off detection probability is usually a decreasing function of n, where the on detection probability 

is an increasing function of n. Yet, there are cases where this likelihood function is better than other functions, and this is 

when the correlation signal is small. Likelihood 3: normalizing every term in Σ with the largest value in all n, see Eq. (5). 

The results are reported in the table   

Case Likelihood 3 

(1)on=1/10,γon=1, off=1/99, γoff=1/10 p(on)=108%, p(off)=93%, 94% off, 86%on 

Advanced filter on case 1 p(on)=98%, p(off)=88%, 94% off, 85%on 

(2) on=1/10,γon=1,off=1/33, γoff=1/10 p(on)=139%, p(off)=193%, 92% off, 91%on 

Advanced filter on case 2 p(on)=123%, p(off)=103%, 91% off, 86%on 

(3) on=1/10,γon=1,off=1/5, γoff=1/10 p(on)=416%, p(off)=163%, 74% off, 96%on 

Advanced filter on case 3 p(on)=198%, p(off)=123%, 72% off, 89%on 

(4)  on=1/49,γon=1,off=1/49, γoff=1/10 p(on)=113%, p(off)=103, 93% off, 98%on 

Advanced filter on case 4 p(on)=87%, p(off)=116%, 98% off, 96%on 

(5)on=1/49,γon=1,off=1/49, γoff=1/3.77 p(on)=103%, p(off)=63, 92% off, 86%on 

Advanced filter on case 5 p(on)=113%, p(off)=42%, 98% off, 84%on 

(6)  on=1/10,γon=1,off=1/60, γoff=1/10 p(on)=126%, p(off)=103, 99% off, 97%on 

Advanced filter on case 6 p(on)=157%, p(off)=94, 98% off, 92%on 

(7)on=1/6.1,γon=1,off=1/60, γoff=1/10 p(on)=134%, p(off)=106%, 95% off, 84%on 

Advanced filter on case 7 p(on)=164%, p(off)=119%, 49% off, 78%on 

(8)on=1/2.77,γon=1,off=1/60, γoff=1/10 p(on)=207%, p(off)=123%, 49% off, 77%on 

Advanced filter on case 8 p(on)=333%, p(off)=174%, 94% off, 73%on 



                                               Table 2 

Case Likelihood 3 

(1)on,1=1/9, on,2 =1/99, off,1=1/99, off,2=1/499 

P(ton)=124%, p(toff)=145%, 86% off, 99%on, 

Pc=[69,71]% , SC=[9,9,6,1]% 

Advanced filter on case 1 

P(ton)=135%, p(toff)=134%, 98% off, 96%on, 

Pc=[64,78]% , SC=[4,25,3,1]% 

(2)on,1=1/19, on,2 =1/81, off,1=1/49, off,2=1/199 

P(ton)=108%, p(toff)=132%, 74% off, 99%on, 

Pc=[78,78]% , SC=[8,9,8,4]% 

Advanced filter on case 2 

P(ton)=121%, p(toff)=117%, 93% off, 98%on, 

Pc=[80,98]% , SC=[10,14,12,5]% 

(3)on,1=1/5, on,2 =1/19, off,1=1/49, off,2=1/99 

P(ton)=147%, p(toff)=249%, 72% off, 99%on, 

Pc=[33,33]% , SC=[1,0,1.9,2.3]% 

Advanced filter on case 3 

P(ton)=183%, p(toff)=203%, 83% off, 93%on, 

Pc=[29,30]% , SC=[2,3,0,2.7]% 

(4)on,1=1/5, on,2 =1/5, off,1=1/49, off,2=1/199 

P(ton)=167%, p(toff)=450%, 72% off, 97%on, 

Pc=[13,14]% , SC=[0,0.6,1,2]% 

Advanced filter on case 4 (likelihood 2) 

P(ton)=184%, p(toff)=119%, 95% off, 75%on, 

Pc=[45,45]% , SC=[1,1,2,5]% 

(5)on,1=1/9, on,2 =1/81, off,1=1/49, off,2=1/199 

P(ton)=99%, p(toff)=116%, 99% off, 69%on, 

Pc=[97,98]% , SC=[3,3,1,0]% 

Advanced filter on case 5 

P(ton)=125%, p(toff)=127%, 98% off, 98%on, 

Pc=[69,68]% , SC=[1,6,5,0]% 

(6)on,1=1/19, on,2 =1/81, off,1=1/49, off,2=1/199 

P(ton)=111%, p(toff)=133%, 99% off, 69%on, 

Pc=[69,69]% , SC=[3,2,1,2]% 

Advanced filter on case 6 

P(ton)=119%, p(toff)=116%, 98% off, 96%on, 

Pc=[77,76]% , SC=[3,3,4,0.67]% 

(7) on,1=1/5, on,2 =1/19, off,1=1/49, off,2=1/99 

P(ton)=184%, p(toff)=135%, 97% off, 99%on, 

Pc=[42,42]% , SC=[0,0,0,1.5]% 

Advanced filter on case 7 

P(ton)=167%, p(toff)=174%, 87% off, 94%on, 

Pc=[36,35]% , SC=[0,3.8,1,2.61]% 

(8) on,1=1/5, on,2 =1/5, off,1=1/49, off,2=1/199 

P(ton)=600%, p(toff)=136%, 67% off, 99%on, 

Pc=[13,12]% , SC=[1.4,3,4.9,5]% 

Advanced filter on case 8 (likelihood 2) 

P(ton)=144%,p(toff)=123%, 96% off, 81%on, 

Pc=[58,57]% , SC=[1.4,1.8,1,1.3]% 

Table 2 Results about filtering the trajectories from Kinetic Scheme 3A. In all cases: γon=1, γoff=1/10. In the first 4 cases, 

the jumping probabilities from substates of the same states are 15%, where in cases 5 until 8 these probabilities equal 

33%. Namely, in cases 1 until 4, the probability of jumping from substate 1on and reaching substate 1off is 85%, where the 

jumping times are exponentially distributed with a rate on,1. *** Likelihoods are similar with those presented in the 

previous table. *** Here, P(ton) is the computed average on durations in terms of the mathematical value. *** The term 

Pc containing the averages <tontoff> and <toffton> in terms of the mathematical values. *** SC are the correlation conditions 

in all combinations of x,y=on,off (on on, on off, off on, off off). *** We see that when the correlation signal is low, 

likelihood 2 is better in various cases 
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