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In this article, we talk about the ways that scientists can solve single molecule trajecto-
ries. Solving single molecules, that is, finding the model from the data, is complicated
at least as much as measuring single molecules. We must filter the noise and take care
of every step in the analysis when constructing the most accurate model from the data.
Here, we present valuable solutions. Ways that solve clean discrete data are first pre-
sented. We review here our reduced dimensions forms (RDFs): unique models that are
canonical forms of discrete data, and the statistical and numerical toolbox that builds
a RDF from finite, clean, two-state data. We then review our most recent filter that
“tackles” the noise when measuring two state noisy photon trajectories. The filter is a
numerical algorithm with various special statistical treatments that is based on a general
likelihood function that we have developed recently. We show the strengths of the filter
(also over other approaches) and talk about its various new variants. This filter (with
minor adjustments) can solve the noise in any discrete state trajectories, yet, exten-
sions are needed in “tackling” the noise from other data, e.g. continuous data. Only
the combined procedures enable creating the most accurate model from noisy discrete
trajectories from single molecules. These concepts and methods (with adjustments) are
valuable also when solving continuous trajectories and fluorescence resonance energy
transfer trajectories. We also present a set of simple methods that can help any scientist
with treating the trajectory perhaps encouraging applying the involved methods. The
involved methods will appear in software that we are developing now, helping there-
fore the experimentalists utilizing these methods on real data. Comparisons with other
known methods in this field are made.

Keywords: Solving single molecules; FRET; AFM; enzymes; ion channels; quantum dots.

Special Issue Comment: This article about mathematical treatments when
solving single molecules is related to the reviews in this Special Issue about

measuring enzymes67 and about FRET experiments2 and about the software QUB.6

1. Introduction

1.1. About the Special Issue

In this paper, I present my results from about a decade of work in this field of solv-
ing single molecules’ trajectories. These results are connected with practically all
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articles in this Special Issue about measuring1–32 and solving33–67 single moleculesa:
proteins, RNA, DNA, enzymes, ion channels, receptors, ATPses, other biological
complexes and entities, quantum dots and other nanobjects are measured at the
level of individual entities. Solving the data, we try constructing the mechanism of
the measured entity. The required mathematical, statistical and numerical treat-
ments that we have developed while collaborating with other scientists, and with
connections with results from many scientists in this field, are presented in this
paper. The field of solving single molecules is among the main ones I work at, with
important results about mathematical and statistical formulations,33,36,38,39,45,64

yet also while collaborating with experimentalists and solving data from experi-
ments involving individual enzymes.15,16

Let me explain about the logic that is in the basis of the treatments that solve the
data from single molecules (here, “solving the data” and “solving single molecules”
refer to constructing the mechanism from the trajectory). First, we must think
about the best model-type that can explain the process we measure. Then, we must
think about the way we can extract the model from the noisy data. We must know
about kinetic schemes (KSs) and other popular dynamical operators appearing
in biophysics, about reactions and energy surfaces. We must have knowledge in
statistics, in analyzing data, and in tackling noise in the data. From these we should
create the algorithms that solve the data. All these issues are presented in this
review. We present various difficulties with solving the data appearing with binning
and thresholding, yet also a set of simple methods that can help with the basic
analysis. We present our recently developed filter (with various new variants) that
can “tackle” the noise from photon two state data, yet can also treat (with simple
extensions) any discrete data from individual molecules. We also talk about the
best way we should construct the model from the clean discrete data: we present
our reduced dimensions forms (RDFs) that are canonical (unique) forms of discrete
data and review the statistical and numerical toolbox that solves clean data.

This review should help experimentalists that try solving in the most accurate
way the trajectories from single molecules and should supply the mathematical
biophysicists a reference.

1.2. The processes

Since the seventies and particularly in the passing 25 years, scientists have con-
tinuously been developing smart methods that measure many processes in biology,
chemistry and physics at a level of individual molecules. These smart methods
enable us (in principle) to extract information about microscopic processes that
is not accessible from bulk experiments. Yet, finding the model from the signal
is complicated. When the noise is not solved accurately in data from individual
molecules, misleading models are reported. Constructing a mechanism from the

aPlease see the introductory article of this Special Issue where we elaborate on all articles that
appear in this Special Issue.
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clean data is also complicated. Here, we talk about solving (“tackling”) the noise in
discrete (with m = 1, 2, 3, . . . states) data and about constructing the mechanism
from the derived clean data. The methods that are presented here were developed
during my work in the past decade. These concepts and methods (with adjustments)
are valuable also when solving continuous trajectories and fluorescence resonance
energy transfer (FRET) trajectories.

When talking about relevant experiments and processes, we list: (i) the passage
of ions and biopolymers through individual channels,3–6 (ii) activity and confor-
mational changes of biopolymers (including measurements involving spectroscopy,
FRET, atomic force microscopy (AFM) and other techniques),1,2,7–21,59 (iii) diffu-
sion of molecules,22–25 (iv) blinking of nanocrystals,26–29 etc.

Signals are time trajectories. Discrete ones are made of several observed values,
or states, where a popular example is of on–off trajectories (this is also the simplest
example): trajectories that are made of on and off periods [also termed residence
times or jumping times (JT); see Figs. 1(a) and 1(b)]. Extensions include FRET
trajectories and even continuous trajectories. From a noisy trajectory, one aims at
finding the mechanism that can generate the observed process, has a physical sense
and can supply scientific insights about the observed process. In many cases, we
say that the model of the observed process is a multi-substate, multi-state Marko-
vian KS. On–off KSs are popular,30–45 [see Fig. 1(e)]. The model can represent, for
example, one of the following physical realizations: a discrete conformational energy
landscape of a biological molecule, steps in a chemical reaction with conformational
changes or environmental changes, quantum states, ion channel activity, etc.

1.3. General comments about solving the signal

The aim is therefore solving the trajectory: building the mechanism from the noisy
data. Here, it is also important to emphasize that in many projects, we can solve the
process only when we solve data from individual entities, since other (experimental
or numerical) techniques are missing or are not equally informative. The case of
enzymes is such an example: extracting precise information about the enzymatic
mechanism is possible only when solving single enzymes because bulk measurements
supply very partial information and numerical simulations (usually) only provide
knowledge about the short timescale.

What are the problems and difficulties that arise when we try solving the data?
First, when the noise in the data is not filtered accurately while analyzing the data
(due to ignoring the noise, assuming that the noise is small, using too simple filters,
etc.), misleading models and partial and questionable conclusions are reported. We
have observed that in many projects, the noise is not filtered accurately. Results
from binning the data and thresholding may depend on the bin size and the thresh-
old value and may fail filtering the noise and thus lead to misleading models (see
Appendix A where various examples show that binning fails yet the method pre-
sented next filters the noise). Another important issue while filtering the noise is
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RDF

RDF

Fig. 1. A segment of a clean two-state trajectory (a), the noisy data (b), φon(t) (c), φoff (t) (d),
a KS (e) and its corresponding RDF (f). Trajectory (a) is generated when simulating a random
walk in KS 1(e), and adding a zero mean Gaussian noise for every element of the clean data,
with a variance, σz = 0.4 counts/bin. φon(t) and φoff (t) are shown, on a log-linear scale, in
panels (c) and (d), respectively. The KS 1(e) has Lon = 2 (squared substates), Loff = 2 (circled
substates), and irreversible transitions. We assign numerical values for the connections among
substates in the KS (the connections are termed reaction rates or transition rates or kinetic

rates) when generating the data and constructing the specific RDF. The RDF is obtained from
the KS with a clear-defined mathematical mapping developed in Ref. 38. (g) Three on-off KSs
with 2 on substates and 3 off substates. The RDFs’ forms of these KSs have the same structure
shown on right, yet different complexity in the connection functions. Therefore: these KSs are
distinguishable with respect of the on-off trajectory. (h) The KSs on the right in this panel have one
on substate and 6 off substates. They have the same RDF shown on the left of this panel and are
therefore equivalent.
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utilizing the properties of the derived clean data. This is not performed in not so
few cases. Yet, one of the concepts that we talk about here is indeed filters that
rely also on the likelihood of the obtained cleaned data.

We can suggest several basic methods that one can apply when staring the
analysis of the data: in case binning is used, always scan various bin sizes and
thresholds. Check where binning is not stable (short and long bins) and where
it is stable. Check various thresholds and their instabilities. Compare correlation
functions with bulk results and control measurements. These are all the most basic
tests that should supply a basic feeling about the data. Only then we can analyze the
data with advanced methods: treating the (e.g.) photons as a function of the order
recorded, we compute correlation functions from this trajectory and the probability
density function (PDF) of the photons. In case this trajectory is not correlated all
the information is just the simple distribution of photons (otherwise we can compute
higher order PDFs). In any case, we should filter the noise in this trajectory with
smart methods and construct the model from the clean data. We then iterate the
filtering with the constructed model until convergence. Performing these steps is
in fact very complicated. Methods that can help progressing are presented in this
review. General relations connecting properties of the data and the mechanism that
generated the data are also presented.

Let us also emphasize that there are not so few projects with weak clean data
analysis (several examples about this are presented in Ref. 33): models that are not
unique are reported without care. We solve the clean data with reduced dimensions
forms (RDFs)38,39,45: these are canonical mechanisms of discrete state trajectories.
We show that an RDF is the most stable mechanisms when solving clean discrete
data.

1.4. Solving the clean data with canonical models

The problem when solving clean two-state data that has been noticed since the
80s33,35,40,41,42 and recently solved38,39,45 (see also Ref. 33) is: a multi substate
on–off KS is not uniquely obtained from (even a clean and very long) two-state
trajectory, and thus we must first construct a canonical form from the data for
an accurate analysis (otherwise the result is just one option from many other pos-
sibilities that are equivalent statistically). Only one canonical form is built from
the data. We have developed very efficient canonical on–off mechanisms termed
reduced dimensions forms (RDFs)38,39,45: these are mathematical mechanisms that
are (relatively) simply built from clean data yet also from a kinetic scheme. RDFs
are generalized Markov process with (usually) a multi exponential connectivity of
substates, where connections are just of different states. The RDFs are advan-
tageous in accuracy and stability over other approaches when solving the clean
data38,39,45: an RDF having the simplest topology that can reproduce the data.
The mapping: KSs⇒ RDF was derived mathematically. RDFs are physical mod-
els. Staring from RDF, we can produce a set of possible KSs’ structures, yet also
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finding numerically all the rate values. In data from a complex kinetic scheme, an
RDF is the only reasonable way zooming in on the solution (otherwise scanning
over all kinetic schemes will take many months). That is also the case when the
data was generated from a rather simple KS. RDFs are presented in Fig. 1 [see
Figs. 1(f)–1(h)].

1.5. Filters that solve the noise

There are many methods that scientists apply when solving data from individual
molecules.29–58 But existing methods treat mainly trajectories without noise or
simple noise forms, and many relay on binning.61–63 “Too simple” filters lead to
misleading results. Thus, when solving the noisy trajectory we must filter the noise
with the smartest methods.

The questions are: How can we filter correctly the noise in the data? How can
we extract all the information from the noisy data? How can we use the infor-
mation in the noisy data while constructing the most accurate model from the
data? Once we filter the noise we can combine the analysis with RDFs. Thus,
in answering these questions, we write a filter (a numerical algorithm)64 based on
new numerical and statistical treatments (see codes at, http://www.flomenbom.net/
codes project12.html) and a general likelihood function: we write the likelihood
function in a way that involves the raw data, and the derived clean data, see
Eq. (3∗). In advanced filters, we express the clean data with our recently developed
canonical forms, RDFs.38,39,45 [In fact, we express the term involving the corre-
lations among events in the clean data with the appropriate reduced dimensions
form, see Eq. (3∗).] We show that these concepts work when solving two state noisy
photon trajectories from various kinetic schemes. We find that the best specific
likelihood form involves a combination of (a) the photons (the observable), (b) the
derived clean data presented with on and off durations and (c) on–off correlation
terms. In most cases, the best results are seen when all these terms in the likelihood
function are included in an unbiased way after a special normalization causing all
terms having an equal contribution (the form of the likelihood function determines
the filter strength).

We show that partial variants lead to wrong results. In particular, let me say
that the filters show that utilizing the clean data in the analysis of the noisy data
is crucial, otherwise the results are not accurate. New variants of the filter are
presented here in the first place.

All issues related with the noise and the filters are presented in parts 2.2
and 2.3.

1.6. The organization of this review

In the next part of this review, we first talk about the analysis of the clean data
(also presenting RDFs), and then list noise-sources in measurements. In the main
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part of that chapter, filters including new variants are presented with results about
several dozen systems. The third part concludes.

2. Solving Noisy Trajectories

2.1. Analysis of clean trajectories

We start with a short description of our toolbox for solving clean trajectories.38,39,45

2.1.1. The information content in the data

Here, we consider a trajectory that is infinitely long and without noise. Therefore,
we can construct directly from the data any jumping time (JT) probability density
function (PDF). These include: φx(t) and φx,y(t1, t2), where, x, y = on , off . φx(t)
gives the probability density that an event is state x lasts time t. φx,y(t1, t2) gives
the probability density that an event in state x lasts time t1 and the following event
in state y lasts time t2. These JTPDFs are expressed with exponential expansions:

φx(t) =
∑

i

cx,ie
−λx,it (1)

with Lx components, (in KS, Lx is usually the number of substates in state x in
the KS) and,

φx,y(t1, t2) =
∑
m,n

σx,y,mne
−λx,nt1−λy,mt2 . (2)

φx,y(t1, t2) having LxLy components. φon(t) and φoff (t) are constructed from tra-
jectory 1(a) [Fig. 1(a)] and are shown in Figs. 1(c) and 1(d), respectively.

2.1.2. Constructing a mechanism from the clean data

When φx(t) and φx,y(t1, t2) are known, we focus on constructing a KS from these
JTPDFs. For this, we construct the likelihood function, l(Θ),

l(Θ) =
∑
x,y

Σi log(φx,y(t1,it2,i)), (3)

and maximize l(Θ) with respect to Θ, where Θ is the set of rates in the KS. In
Eq. (3), the index i represents the ith cycle in the cleaned on–off data. We perform
the maximization with constraints: the coefficients in Θ should also reproduce the
coefficients of φx(t) and φx,y(t1, t2). Yet, finding the KS from φx(t) and φx,y(t1, t2)
is difficult. The reasons are: (i) the number of the substates in each of the states,
Lx (x = on , off ), is usually large, and (ii) the connectivity among the substates is
usually complex. Yet, the data has limited information content, and so not all the
details regarding the KS are obtainable from the data. In addition, there are many
local solutions in the landscape of the coefficients,38 and many of these solutions
are very different than the correct KS. We can average over many initial conditions
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and this exhaustive search is not efficient since convergence is not guaranteed in the
space of coefficients. (iii) A fundamental difficulty in finding the correct KS arises
from the equivalence of KSs; namely, there are a number of KSs with the same
trajectory in a statistical sense.33–35,38,39,45

We solve these problems with canonical (unique) forms.35,38,39,45,64 The space of
KSs is mapped. The new space in made of canonical forms. A given KS is equivalent
with a unique canonical form, yet several KSs can have the same canonical form.
KSs with the same canonical form are equivalent, and cannot be discriminated based
on the information in an ideal two-state trajectory. We have derived new canonical
forms: RDFs38,39,45; see Fig. 1. RDFs are generalized Markovian models since the
connections in RDFs have usually multi-exponential JTPDFs. The advantages of
RDFs in solving the problem of relating a model with the time on–off trajectory
over other approaches are numerous38,39,45: RDFs are physical models, and possess
the simplest possible topology. They are accurately constructed from the data (and
from KSs) and are accurately connected with a set of KSs, etc.

We developed a rather simple algorithm that can construct the RDF from φx(t)
and φx,y(t1, t2). First, we note that the rates in the exponential expansion of the
JTPDF φx(t) are equivalent with those in the exponential expansion of the JTPDFs,
ϕx,mn(t); ϕx,mn(t) is the JTPDF connecting substates nx → my in the RDF, and
follows:

ϕx,mn(t) =
Lx∑
ν=1

CRDF,x,mνne
−λx,νt. (4)

Then, we note that the rank Rx,y (x �= y) of the matrix σx,y that appears in the
double exponential expansion of φx,y(t1, t2) gives, in most systems, the number of
substates in state y in the RDF. Finally, the coefficients in {CRDF } are found when
maximizing the likelihood function, Eq. (3), when built from the RDF.

2.1.3. Constructing the RDF from finite length clean data

Finding the most accurate RDF from a finite trajectory, even without noise, is a
real challenge. The reason is that φx(t) and φx,y(t1, t2) are not known, and we need
smart numerical procedures for extracting these PDFs from finite data. We have
developed a set of procedures, forming a toolbox, for constructing accurately the
RDF from finite data.38,39 The toolbox executes the following steps: (i) The rates
and the coefficients in the exponential expansion of the JTPDF φx(t)s are found
with fitting, using a new procedure based on the Padé approximation method.
(ii) The ranks Rx,ys of the matrices σx,ys are found from the matrices φx,y(t1, t2)s;
any particular φx,y(t1, t2) and the corresponding σx,y have the same rank, yet, the
rank of φx,y(t1, t2) is much more accurately obtained from finite data. We have
developed a new numerical procedure that computes the rank of the φx,y(t1, t2)s
from the data. (iii) The matrices σx,y are estimated from the data while constructing
special JTPDFs (of the sum of following JTs and of the sum of the square root of
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following JTs) with a new numerical procedure. (iv) The last step utilizes a variant
of Eq. (3) when constructed from the RDF.

Using the toolbox, an RDF is constructed from the data fairly accurately,
and importantly, much more accurately than other mechanisms. Once the RDF is
constructed, we can express this model with a set of KSs. The set usually contains
the most possible KSs that are associated with the constructed RDF. Choosing
from the set a particular KS requires additional information from other sources
(additional experiments, etc.).

2.2. The noise in the data

Can we filter the noise in a way that the obtained data is accurate to an extent
that enables accurate construction of a mechanism? This depends on the noise-
level and on the filter. Weak filters also fail when the noise level is solvable. A
fair statement is that the problem of dealing with noise is an unsolved issue in the
context of data from individual molecules. In too many projects, “too” simple filters
as well as filters that rely on binning are used. But these collapse much prior to the
filter that is presented here. We present in the next part a filter that solves a two-
state photon trajectory. The filter is applicable on any discrete data with simple
extensions. Yet, we also present a general method that we can use on other data
types. Next, we present all the main issues with noise in two-state data and other
data-types.

2.2.1. The type of the external noise

The type of the external noise depends on the measurement’s type. This information
is utilized in the analysis of the noisy data. Examples include Poissonian noise
and Gaussian noise. In particular, the time interval between successive photons is
monitored in measurements that collect photons. A simple model for generating a
photon two-state trajectory is shown in Fig. 2(a). The on–off Markovian KS has
transition rates λon and λoff , connecting, respectively, the on substate with the
off substate and the off substate with the on substate. Once the process is in the
on (off) state it emits photons with a rate, γon (γoff) (in fact, noise photons are
recorded also when the process is in the on state: this can only slightly increase the
effective γon).

Two-state trajectories can have a Gaussian noise. This is observed in, e.g. ion
channel recordings. We generate such data while first still generating a clean two-
state trajectory, u(t), yet here a (zero-averaged with width σz) Gaussian noise z(t)
is added every dt: the equation for the signal w(t) reads: w(t) = u(t) + z(t).

2.2.2. Strong noise?

Clearly, correctly cleaning the noise depends on how strong the noise is. Indeed, the
experimentalists’ interest is designing clean measurements. Yet, in the analysis, we
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Fig. 2. A KS with a mechanism of photon emission (a), the clean on–off trajectory (b), the
binned data (c), the photon trajectory (d), and a log-linear plot of the steady state histogram
of photons (e). In (a), a curly arrow indicates on the emission of photons and a full arrow is
a transition rate. The rate values are: λon = 1/10 and λoff = 1/99, γon = 1 and γoff = 1/10
(scaled units). The binned trajectory in (c) is very difficult to work with. The photons in (d) are
plotted in the order detected, where on (off) photons are in red (green). The filter is applied on
this trajectory. The histogram in (e) is the photon PDF in order n = 8. Its two parts are clear.

must have a way in solving any value of the ratio signal/noise, and this includes a
way to identify “too” high noise levels.

2.2.3. Internal noise: The issue of time resolution, detection efficiency, etc.

The noise can also originate from low time-resolution of the experimental devices
compared with the measured process. Say that the fastest duration of on-off
transitions τ is smaller than the time for detecting the required amount of photons.
This means that fast events can be missed. A missed fast on event can also orig-
inate when the number of photons that are emitted in τ is small and is the same
as the number of noise photons in an off event. A missed off event occurs when
the number of noise photons emitted in a fast off duration τ is unusually large
(saying that there are just relatively fast off photons in the specific off duration)
and thus bridges two on events. Small detection efficiency can result in similar
problems.

The filter presented next can tackle such cases.
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2.2.4. Correlations in the noise

The noise may have internal correlations, and also correlations with the state of the
process. When analyzing the process, we must use the fact that the noise is corre-
lated, that is, for discriminating signal from noise, we must include the existence
of correlations in the noise. Not doing this leads to erroneous results.

The filter presented next tackles such cases.

2.2.5. Using correlations in the clean data in solving noise

When there are correlations among durations in the clean data, these must be
taken into account when cleaning noisy data. Again, one must use this information.
Otherwise, the results could be misleading.

The filter presented next tackles such cases.

2.2.6. Other issues

Any issue that interferes with identifying accurately the state of the process from
the observable is noise. For example, entities diffusing in and out the laser spot,
fluctuating coefficients (the detection efficiency) etc. We must treat all these issues
when filtering the noise.

2.3. Filtering the noise

In Secs. 2.1 and 2.2, we defined the problem: for solving the data in the right way
while utilizing RDFs, we need solving the noise in the data. Our mathematical
approach presented in Sec. 1.4 enables us in writing the likelihood function,

l(Θ) =
∑
m,n

log (Pobservable(m,Θd)φclean data(n,Θc)) + compensation terms (3∗)

The symbol Sigma, Σm,n, includes all observable values and all values of the derived
clean data. The first step in the algorithm is identifying the type of the observable
in Pobservable(i,Θd). Yet, Eq. (3∗) determines the best solution (the best identi-
fication of the observable), while maximizing l(Θ), with a fixed Θ. The set Θ
includes the coefficients representing (for example) the photons, Θd, and those
coefficients representing the derived clean data, Θc. We find these coefficients from
the data, namely, we write these with statistics from the data. φclean data(j,Θc)
is first approximated with statistical functions. Only in an advanced step in the
filtering, φclean data(j,Θc) represents the model. This model is an RDF. Therefore,
in this scheme, we iterate among the identification of the photons and the identifi-
cation of the best mechanism that can generate the clean data. A similar iteration
scheme was suggested in Ref. 66, yet here the algorithm forming the filter having
many innovative treatments, yet also the specific likelihood function, see Eq. (5).

Likelihood functions frequently appear with compensation terms because there
are biases in the likelihood function. Yet, the compensation terms in Eq. (3∗) are

B
io

ph
ys

. R
ev

. L
et

t. 
20

13
.0

8:
10

9-
13

6.
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 1

09
.6

4.
21

1.
12

9 
on

 0
1/

22
/1

4.
 F

or
 p

er
so

na
l u

se
 o

nl
y.



January 8, 2014 15:51 WSPC/S1793-0480 204-BRL 1330001

120 O. Flomenbom

system-dependent and will determine the strength of the filter. In addition, we can
perform several adjustments also on the first term in Eq. (3∗). In what follows, we
show this while solving pretty complicated versions of noisy two-state photon data
with the general concepts presented in Secs. 2.1. and 2.2. resulting in Eq. (3∗).

2.3.1. Known statistical methods for noise-filtration

Clearly, many authors have dealt with solving the actual data in relevant
measurements.46–54,51–63 General methods include: the maximum likelihood tech-
nique, a maximum entropy approach, and a Bayesian information approach. Quite
a few authors have dealt with part of the specific problems that were defined in
Sec. 2.2.48–54 For example, correcting for missed fast events using a modified like-
lihood function was suggested in Ref. 54 when tackling ion channel data. Such
methods may also be applied here, adjusted, when building the RDF from the
data.

Yet, let me emphasize that techniques for solving noise in two-state data are
partial: simple thresholds and smoothening are usually applied on the binned data.
Correlations in the noise, or among the noise and the state of the mechanism are
not taken in account in not so few cases. In addition, the methods do not use
correlations among following durations in the clean data when solving the noise.
In many cases, the methods assume that (due to various treatments) the noise is
averaged out and does not influence the analysis. Clearly, all these assumptions are
problematic and may lead to misleading conclusions. There are cases where filters
that rely on binning fail yet our filter presented here removes the noise (we show
such an example in the next part and in the Appendix).

Tools for solving noisy m-state trajectories, FRET trajectories, and continuous
trajectories are sparser.

2.3.2. Cleaning noisy photon two-state data

We present here and in the next part our recently developed filters and new variants
that solve noisy two-state photon trajectories where we apply Eq. (3∗) on various
cases: in fact, we solve several dozen variants.

The description of the process. We say that the measured entity stays at its
position while it is measured (solving diffusion is a simple extension). The detection
efficiency (and quantum yield, etc.) is high. Still, the data is rather short and
contains just 2700 on–off cycles.

We start with the KS 2(a). We set λon = 1/10, γon = 1, λoff = 1/99, γoff = 1/10
(all units are scaled), and generate clean data and photon data [see Figs. 2(b)–2(d)].
This design enables having 10 photons in any state, in a typical event, and in
addition on photons are ten times faster, so in most cases there is a clear distinction
among states. Nevertheless, in Fig. 2(d) we show a simple design, where there are
on events that are fast with only one photon (photon 19 and photon 55 in 2D) and
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when such an event happens, it looks like one long off event, rather than: off event,
short on event, off event. Our filters designed here can solve such cases. We also
emphasize that we apply the filter on many rate values finding the interval where
results can be accurately seen. This in fact solves the issue of signal to noise ratio,
since now we can compute the rate values that generate a filterable trajectory: once
we solve a particular data, consistency tests should approve that indeed we have a
filterable trajectory, e.g.: in the case where KS 2(a) generated the data, filterable
data is seen when on photon rate is at least 3 times faster than the off photon rate,
and on average we should detect at least 5 photons in each event.

Comment: when the filter is designed inappropriately, it may fail. Not applying
all steps in this filter (in the way presented next) may result in rates that are ten
times different than the real rates. This filter in the stable form can tackle issues that
were not solved in the past. Authors frequently assume that the noise is averaged
out, or small, or not important and ignored the noise, or calculate correlations
function from the binned data averaging out most of the new information that is
contained in data from individual molecules, and other questionable techniques that
lead to misleading results and partial results. We also show that this filter works
when binning fails.

The basic filter : the design. The basic filter is built in the following wayb:

(i) Create the PDF of the photons.c Identify the two parts (on and off). We must
see these parts in this PDF in order, having the possibility of filtering the
data. The intersection among the parts is a threshold, TrSld1.

(ii) Compute directly from the data 1/γon and 1/γoff using TrSld1. Here, tx =
1/γx, where tx is the average of the x (= on , off) photons. Since there are
many off photons left to TrSld1, we use a special correction formula:

t̃off = (1 − e
−T rSld1

toff )(−TrSld1e
−T rSld1

toff + toff (1 − e
−T rSld1

toff )) + toff e
−T rSld1

toff .

t̃off is the updated value and t̃off = 1
γoff

. (In what follows we write toff also
when calling the updated quantity.)

(iii) Compute a likelihood threshold using the derived rates,

TrL = 1/(1/ton − 1/toff ) ∗ log(toff /ton).

This is a second threshold, TrL. The likelihood threshold is obtained when
we set, likelihood on photon equal to likelihood off photon.

bThe codes are presented at http://www.flomenbom.net/codes project12.html.
cWe apply the filter to the raw data. The raw data are the relative photon arrival times (to the
detector). We call these relative arrival times: photons. Here “relative arrival times” is the time
among two following photons’ recordings.
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(iv) Compute a threshold for a slow on photon, TrOn3,

TrOn3 = ton ∗ log(Np/10),

where Np is the total number of photons. TrOn3 is slowest possible on photon
in the data in a statistical sense.

(v) Create trajectories with averaging of order n, where n = 2, . . . , 27. We average
any photon with n following photons e.g.: ti(n) = 1

n (ti + ti+1 + · · ·+ ti+n−1)
is photon i in trajectory of order n, where here ti is the ith recorded photon.

(vi) Construct the photon PDF for each trajectory of order n [see Fig. 2(e)].
Compute the three thresholds in each n order trajectory: TrSld1 is still the
intersection of the two parts of the photon PDF. TrL is computed from the
on part of the photon PDF: TrL is the time that maximizes the on part plus
one standard deviation. TrOn3 is computed from the off part of the photon
PDF. It is the time that maximizes the off part averaged with the intersection
of the parts [See Fig. 2(e)].

(vii) The algorithm determines each photon’s fate in each trajectory of order n. It
uses the thresholds. In a simple version, the on condition checks following on
photons: at least one of the three following photons is smaller than TrL and
the real photon is smaller than TrOn3. On photons fulfill this condition. Off
photons fulfill the condition: at least one of two following photons is larger
than TrL or the photon checked is larger than TrSld1.

(viii) There is a correction part in the algorithm compensating of the fact that
the edges photons (when changing states) are smoother relative to the raw
trajectory, particularly in higher order trajectories.

(ix) The likelihood function determines the best result. Its form determines its
strength. We have derived the best form here: compute the likelihood of the
photons in each trajectory, lphotons(n),

lphoton(n) =
∑

i

log(γone−ton,i(n)γon ) +
∑

i

log(γoff e−toff ,i(n)γoff ).

Here, ton,i(n) is on photon number i identified in trajectory of order
n, and similarly in the off photons with toff ,i(n). The exponential function
is extendable: the photon emission mechanism, ψx(t), can result in, e.g. a
multi-exponential function, yet, ψx(t) can include other effects. We normal-
ize lphoton(n): lphoton(n) → lphoton(n)/maxn |lphoton(n)|. We then compute
the likelihood of the derived clean data (this is the part of the on and off
durations), lon off (n),

lon off (n) =
∑

i

log(λone
−uon,i(n)λon ) +

∑
i

log(λoff e
−uoff ,i(n)λoff ).

Here, uon,i(n) is on duration number i identified in the trajectory with aver-
aging of order n, and similar in the off durations. Again, the exponential
function representing the clean data durations, φx(t), is extendable, and
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can account for any mechanism that generates these times. We normalize
lon off (n): lon off (n) → lon off (n)/maxn |lon off (n)|. The total likelihood is a
simple combination of the two parts.

Yet, we also check about correlations in the data and when such are seen,
another term, lc(n)/maxn |lc(n)|, is included in the total likelihood function
(see specification in the next part). Thus, the likelihood function in this filter
follows:

l(Θ, n) = l̃ph.(Θph.(n), n) + l̃on off (Θon off (n), n) + l̃c(Θc, n), (5)

where the symbol twiddle represents the normalization specified above, and
we explicitly write here the n-dependence of the likelihood function where n
represents the averaging degree.

The basic and general treatments in this filter include: (i) developing the
various thresholds and (ii) the averaging of order n, (iii) developing the spe-
cific conditions in the algorithm, (iv) creating the special likelihood function
from Eq. (3∗). We emphasize that we can use in the filter in steps (vi)–(ix)
in the algorithms other conditions and other likelihood functions. Therefore,
this filter can have many additional forms. In fact, we present in what fol-
lows several additional likelihood functions (step (ix) in the filter) and several
additional set of conditions (step (vii) in the filter), and study the advantages
of each of these in cleaning the noise.

The basic filter : results. Applying the filter, we see encouraging results: we are
able to extract λon and λoff in various cases (see Table 1). For example, in the
case specified above, the best result finds λon within 8%, λoff within 7%, where on
photons are identified correctly 86% of the time and off photons 94% of the time. We
also find the region where the data is “too” noisy. In order to have accurate results,
we must have an average of at least five on photons in an on event and γon is five
times faster than λoff and γoff . Otherwise, filtering will fail. In Table 1, we also talk
about results from three likelihood functions, showing that here Eq. (5) solves best
the noise. We also apply a partial filter on several cases showing that we must use the
entire filtering. In a “partial” filter, we use a simple threshold-filter with the values,
TrL(n) and TrShld(n), instead of the conditioning parts (vi)–(viii) in the algorithm.
In both the cases, the condition checked either the i raw photon or the i averaged
photon (e.g. the condition is: photon(n, i) ≥ TrL(n)|photon(1, i) ≥ TrL(1), when
checking an off photon with a photon-likelihood threshold). The results show just
30% accuracy in both rates in both the cases.

The filter presented here solves cases where binning fails. We show this explicitly
in the Appendix.

Results from an advanced filter. We also apply an advanced filter on the data where
the conditions in part (vii) in the algorithm are changed. Here, the on photon-
conditions are about three photons. Either photon i is faster than TrSld1, or photon
i is faster than TrOn3 with one of the next two averaged photons is faster than
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Table 1. The results when filtering the data generated from the simple mechanism in Fig 2(a):
λon and λoff in terms of the real values, and the percentage of correct determination of the type
of the photon. We checked the results from three likelihood functions. The reported results
are from likelihood function 3 (unless otherwise is indicated). Likelihood 1: the normalization
of the function is performed with the number of cycles. The results are like in case 3, since in
this example the main contribution in the likelihood function is from lphoton(n). Likelihood 2:
every term in the likelihood function is normalized with the number of specific events in that
term. Here, in most cases the likelihood in an increasing function of n resulting in relatively
large rates. There are cases where we see a maximal value at an intermediate n resulting from
the patterns of the detection probability: the off detection probability is usually a decreasing
function of n, where the on detection probability is an increasing function of n. Yet, there
are cases where this likelihood function is better than other functions, and this is when the
correlation signal is small. Likelihood 3: normalizing every term with the largest value in all
n, see Eq. (5). The results are reported in the table: the best result is starred. In the text we
talk about comparing results from different filters.

Case Likelihood 3

(1) λon = 1/10, γon = 1, p(λon) = 108%, p(λoff ) = 93%, 86% on, 94% off
λoff = 1/99, γoff = 1/10

Advanced filter on case 1 p(λon) = 98%, p(λoff ) = 88%, 85% on, 94% off
*Zooming filter on case 1 p(λon) = 106%, p(λoff ) = 113.9, 93% on, 92% off

(2) λon = 1/10, γon = 1, p(λon) = 139%, p(λoff ) = 193%, 91% on, 92% off
λoff = 1/33, γoff = 1/10

*Advanced filter on case 2 p(λon) = 123%, p(λoff ) = 103%, 86% on, 91% off
Zooming filter on case 2 p(λon) = 121%, p(λoff ) = 145%, 94% on, 84% off

(3) λon = 1/10, γon = 1, p(λon) = 416%, p(λoff ) = 163%, 96% on, 74% off
λoff = 1/5, γoff = 1/10

*Advanced filter on case 3 p(λon) = 198%, p(λoff ) = 123%, 89% on, 72% off
Zooming filter on case 3 p(λon) = 169%, p(λoff ) = 440%, 67% on, 94% off

(4) λon = 1/49, γon = 1, p(λon) = 113%, p(λoff ) = 103, 98% on, 93% off
λoff = 1/49, γoff = 1/10

Advanced filter on case 4 p(λon) = 87%, p(λoff ) = 116%, 96% on, 98% off
*Zooming filter on case 4 p(λon) = 90%, p(λoff ) = 105%, 98% on, 92% off

*(5) λon = 1/49, γon = 1, p(λon) = 103%, p(λoff ) = 63, 86% on, 92% off
λoff = 1/49, γoff = 1/3.77

Advanced filter on case 5 p(λon) = 113%, p(λoff ) = 42%, 84% on, 98% off
Zooming filter on case 5 p(λon) = 55%, p(λoff ) = 44%, 55% on, 92% off

*(6) λon = 1/10, γon = 1, p(λon) = 126%, p(λoff ) = 103, 97% on, 99% off
λoff = 1/60, γoff = 1/10

Advanced filter on case 6 p(λon) = 157%, p(λoff ) = 94, 92% on, 98% off
Zooming filter on case 6 p(λon) = 113.8%, p(λoff ) = 123%, 94% on, 89% off

*(7) λon = 1/6.1, γon = 1, p(λon) = 134%, p(λoff ) = 106%, 84% on, 95% off
λoff = 1/60, γoff = 1/10

Advanced filter on case 7 p(λon) = 164%, p(λoff ) = 119%, 94% off, 78% on
Zooming filter on case 7 p(λon) = 121%, p(λoff ) = 139%, 92% on, 87% off

(8) λon = 1/2.77, γon = 1, p(λon) = 207%, p(λoff ) = 123%, 75% on, 94% off
λoff = 1/60, γoff = 1/10

Advanced filter on case 8 p(λon) = 233%, p(λoff ) = 179%, 72% on, 89% off
*Zooming filter on case 8 p(λon) = 161%, p(λoff ) = 187%, 84% on, 85% off
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TrL(n) and the other photon in the couple is faster than TrSld1. The off photon-
condition is about five photons, either: (i) the i photon is larger than TrSld1, (ii)
one in three averaged photons [ti(n), ti+1(n), ti+2(n)] are larger than TrSld1(n),
(iii) photon ti+3(n) is larger than TrSld1(n) and the average of the previous three
photons is larger than TrL(n) and (iv) photon ti+4(n) is larger than TrSld1(n) and
the average of the previous four photons is larger than TrL(n).

Table 1 also reports on the results with the advanced filter. In various cases, the
results are better with the advanced filter than the simple filter. This is valid in
cases where the number of off photons detected is relative small, yet the difference
among the average durations of on and off photons is a constant and large: γon/γoff
is large, and, γon/λoff => decreases from a large number toward one. When many
photons are detected, yet the difference among the average on and off photon times
is relatively small (γx/λx is large, and, γon/γoff => decreases toward one), the
simpler algorithm is better.

The logic in the basis of the filters. We expect seeing many short photons in the on
state and many slow, long, photons in the off state. In principle, a simple threshold
can discriminate on and off photons in a deterministic photon emission case. Yet,
the emission of the photons is also a stochastic process. Namely, in the on event
we may see several photons that are slow and in an off event we may see several
fast photons. The second case will occur often when the off photon emission PDF
is exponential, where the first case is relatively rare. In particular, the probability
that an on photon is larger than any cut-off c is given by: pc,on =

∫ ∞
c ψon(t)dt.

Therefore, in the case where, ψon(t) = γone
−γont, with γon = 1 and c = 3.33,

we have, pc,on = e−γonc ≈ 0.033. Therefore, in an on state, two consecutive slow
photons signaling a jump from the on state with a probability of 99.9%. In this way,
we can choose the conditions in the algorithm. What about the off state? pc,off =∫ c

0 ψoff (t)dt is the probability that an off photon is faster than c. In the cases where
ψoff (t) = γoff e

−γoff t, with γoff = 1/10 and c = 3.33, we have, pc,off = 1− e−γoff c ≈
1/3. Thus, even three fast consecutive off photons can appear in the trajectory with
a relatively large probability. Just the sixth fast consecutive photon may signal on
a jump from the off state. Again, we see that the conditions in the algorithm are
adjustable depending on pc,off . When we study the following fast photons until
we see a slow one (in an off state), we check the average of these fast photons.
The average should exceed (at least) the likelihood threshold: the average of m off
photons is 1/γoff with a width of 1/(γoff

√
m). This average minus the width is much

larger than the likelihood cut-off also when m is 5 (and even smaller) in the case
specified above.

2.3.3. Cleaning noisy two-state photon data with correlations
in the cleaned data

The data is generated from a KS with four substates: two on substates and two off
states, see Fig. 3(a). This generates a trajectory with correlations among durations
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λoff,12

γon γoff 

1On 1Off

γon γoff 

2On 2Off

(a) (b)

Fig. 3. The data was generated from the KS (a) with the following rates (scaled units) (λx,21

connecting substates 1 in x and 2): λoff ,21 = 0.85/99, λoff ,11 = 0.15/99, λoff ,12 = 0.85/499,
λoff ,22 = 0.15/499, and, λon,21 = 0.85/9, λon,11 = 0.15/9, λon,12 = 0.85/99, λon,22 = 0.15/99.
Once the process is in any of the off substates, it emits photons with a rate, γoff = 1/10, where
when staying in the on substates, photons are emitted with a rate, γon = 1. The likelihood function
is presented in (b), on a log linear scale. Here, the maximal likelihood value is when n = 12.

in the clean data. The filter presented in the previous part is applied also here. The
only modification includes another term, lc(n),

lc(n) =
∑
x,y,i

log(Nx,y exp{−(
√
ux,i(n)uy,i′(n) − 〈√uxuy〉)2/2σ̃2

x,y}. (6)

Here, x, y = on , off , and i is cycle i (i′ = i + 1, where when x = on and y = off ,
i′ = i), Nx,y is a normalization constant, and, σ̃2

x,y = 〈uxuy〉. lc(n) is included in the
likelihood function, Eq. (5). This can account for correlations in the data. In the
likelihood function, we include a normalized term: lc(n)/maxn |lc(n)|. This term is
included when the correlation coefficient Cx,y shows correlations in the clean data
that are larger than 10%. The correlation coefficient follows:

Cx,y =
∣∣∣∣
〈uxuy〉
〈ux〉〈uy〉 − 1

∣∣∣∣ .

Here, x, y = on, off . The results are encouraging in the various cases checked
(results for about eight cases are presented in Table 2). Only when the correla-
tion term is included [in a normalized, unbiased, way: see Eq. (5)], we see accurate
results. The likelihood function is presented in Fig. 3(b), representing case 1 in
Table 2. At the solution that maximizes the likelihood function, we find: (i) 99%
on photon identification and 86% off photons, (ii) the average duration in the on
state is found within 24%, and 45% in the off state and (iii) correlations coefficients
in durations (derived from the cleaned data) are found within 67%. Positive corre-
lation condition is seen. These results are from the simple filter, where better ones
are derived from advanced filter presented next, see Table 2.

In Table 2, we present various additional results about this process. One impor-
tant conclusion is that when the correlation signal is small (that is, smaller than
0.1, and there are cases here where this is also the mathematical value), a different
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normalization than that in Eq. (5) is found to be better (that is, we find better
results with another normalization). This operation normalizing each term with
the number of events (for example, the on photon-likelihood is normalized with the
number of on photon detected, etc.) rather than with the largest absolute value
(depending on n) of the term.

2.3.4. A three scale filter

We study here a new variant of the filter. We develop a new set of conditions in
step (vii) in the algorithm. We suggest a general new concept. Scan the photon
trajectory with three scales: the local scale, the intermediate one, and the possibly
large scale. These are length scales in the photon index. This filter should increase
the accuracy in determining a jump among states in a relatively small additional
time investment (about a 33% increase in a very fast basic algorithm that solves in
several minutes 2700 cycle data (with a 10 photon average in each event)).

In the three-scale filter, the local scale is similar with the scale appearing in
the conditions suggested in the previous filters (these check about five photons
in determining the type of the specific photon). The intermediate scale is used
in ambiguous cases where the local scale does not result in a clear answer about
“jumping” or “staying”. There, we check a bunch of eight following photons after
the photon that may imply a jump: we compute statistics that should confirm
the jump, e.g.: we compute the average and the variance of the photons in the
group and detect patterns that may show a jump: we check whether the number of
following photons faster than a threshold, what is the slowest photon in the group,
and additional patterns. In cases where the eight photon analysis does not supply
a clear answer about a jump, we check a larger group. We will scan the trajectory
until a clear pattern signifying a jump is seen (that is, instead of working with eight
photons we may work with 25 photons or 33 photons and even more).

Specific three-scale filter. Here, we specify a three-scale filter.

In the on state: the basic condition is like in the advanced filter. When a jump
is implied, the zooming part is considered with four and five photons. A jump is
implied when any of the following conditions is fulfilled: (i) the average of either
groups is larger than TrL. (ii) The maximal photon value is larger than TrOn3. (iii)
The standard deviation is larger than TrSld1. (iv) In addition, we also check eight
photons, when three from eight are larger than TrSld1: this implies a jump.

In the off state: the basic condition is like in the advanced filter. When a jump is
implied, the zooming part is considered with groups with four and five and six and
seven and eight photons: (i) in case where the average is larger than TrL and the
next photon is larger than the TrSld1: this too is the off state continuation. (ii) When
the maximal photon is larger than TrOn3: this is the off state continuation. (iii)
When the standard deviation is larger than TrSld1: this is the off state continuation.
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(iv) In addition, we also check eight photons: when three from eight are larger than
TrSld1: this is the off state continuation.

Results from the three scale filter : the simple system. Here, we talk about the results
from the specific three-scale filter when applied on the simple KS in Fig. 2(a).
Results appear in Table 1. We see that in all cases where the advanced filter having
better results than the simple filter, the filter with the zooming in part can also
improve the results.

Results from the three-scale filter : the correlated data. Here, we talk about the results
from the three-scale filter when applied on the KS in Fig. 3(a). Results appear in
Table 2. The zooming in filter is almost always much better than the other filters.

3. Concluding Comments

This article presented treatments required when solving single molecules.

3.1. Solving single molecule trajectories

The filters explaining: we must invest in smart filters. Noise in the data
has not been treated in the most accurate way in many projects. This may result
in misleading conclusions. Solving the noise in relevant data will help significantly
many researchers. (i) Here, we talked about our recently developed likelihood func-
tion, Eq. (3∗), and its specific forms in discrete data. We showed here that in
two-state noisy photon trajectories, this form is a combination of three terms: the
photon data, the clean on–off durations, and the correlations. Each term is normal-
ized in a special way: in most cases, the normalization follows: l∗(n)/maxn |l∗(n)|
where * representing the various term types. There are cases where we normalize
with the specific number of events per term. We see in preliminary studies of a
different filter that the likelihood function should also contain specially designed
compensating terms in order having even more accurate results. (ii) The iterative
scheme that we talked about in the area of Eq. (3∗) was suggested in Ref. 66. Yet,
the uniqueness here is in the statistical and technical fronts and the algorithms’
forms that is based on many new treatments presented here and in Ref. 64. (iii)
The noise filters combined with the toolbox RDF that solves clean discrete data
will form the most accurate way that can solve single molecules.

3.2. Further research

The filter reviewed here cleans the noise. Once we have the clean data, we can
use our toolbox to find the model from the clean data39 (see also Sec. 2.1). Else,
we can apply another filter’s type that uses the results from the clean data of the
first filter. We can apply this filter in an iterative way (the input coefficients are
updated after the filter is applied, and the filter is applied again until convergence
is seen). Our focus is in finalizing such a filter. We emphasize that tackling other
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trajectory-types will demand further development: Extensions will treat continuous
trajectories, FRET data, quantum dot data, and other data variants that extend
the discrete data type. Further related filters will appear in future publications.

An important part in this project continuation will develop software that will
enable experimentalists solving the trajectories easily without bother about all the
math. We will collaborate with Fred Sachs about combining and improving the
toolbox RDF and the software QUB.30,31,66 We plan also collaborating with exper-
imentalists when developing stable software.

3.3. Further concluding comments about this review

and the Special Issue

The field of biophysics is an established one. We usually utilize dynamics and ther-
modynamics in explaining biological processes in this field. In this review, we talked
about solving data from the most advanced experiments in biophysics: experiments
measuring individual biological entities. We must apply smart statistical methods
and smart numerical algorithms when creating an accurate model from the data.
The model is a KS: a KS is valuable in explaining the dynamical process and is
valuable in expressing the energy surface of the process. The KS can account for
reaction pathways and structural dynamics, simultaneously. A complex KS can
have time dependent rates representing changing environments. Here, any KS also
represents the way the observable is generated. Solving the data requires smart
filtering methods for solving the noise and ways about constructing the mechanism
from the clean data. All these are talked about in this paper. Related reviews that
appear in this Special Issue about measuring and solving single molecules include:
the review from Fred Sachs about the software QUB.6 The review from Hatzakis
and collaborators about measuring individual enzymes.67 The review from Orte
and collaborators about measuring bioprocesses with FRET.2

Appendix A. Comparisons with Binning and Thresholding

In the Appendix, we show that the filter presented in the main text solves cases
where binning the data does not work and the obtained binned trajectory is “too”
noisy and all the methods that are used on the binned data will not help (the
methods in Ref. 50 do not filter the noise: these calculate correlation functions
from the raw data (and from slightly smoothed data) but this does not clean the
data and the extracted information is rather poor in content).

In Figs. A.1–A.3, we simply show that when the noise increases there are cases
where binning results in trajectories where an off event might contain a peak that
is identical with on events and that there are on events that contain “too” few
photons, identical with an off event. Thus, any method that is applied on the
binned data will not filter such cases. In such cases we must apply the information
from various bins and also global information. Yet, rather than using the binned
values we should employ the raw data, e.g.: the photons. Just an algorithm that
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can check every photon when utilizing the local information of consecutive photons
and the global information (thresholds extracted from the entire data) can help.
The algorithms of the main text therefore constitute the best way that can enable
solving the data photon after photon.

We highlight the point that since the noise appears also in the off state, when
photons are recorded with an exponential rate, many will have fast values. Applying
the Fourier-transform on the binned data will not help much here, in particular, in
the cases specified in the next figures. (The Fourier transform method will help when
each point in the trajectory is a combination of real signal and a Gaussian noise.)

A.1. A simple case

In Fig. A.1 in the Appendix, we present data that is generated from the mechanism
in Fig. 2(a) in the main text. The rate values are: λon = 1/10, γon = 1, λoff = 1/99,
γoff = 1/10 (all units are scaled). Figure A.1 showing various panels: the upper
panel shows the clean on-off data and the binned data, with the number of photons
in a bin of size 1.99. The other (lower) panel is the photon durations in the order
recorded. We also plot the real identification. The larger value there is the value of
about 1/γoff and the smaller value is the value of about 1/γon .

In this setup, we can generate very clear two-state data. We see very clearly
two-state trajectory also in the binned data (middle of the figure, blue), and the
binned data and the clean data (red curve) coincide. Thus, in this example, cleaning

? ‡

?
‡

Fig. A.1. (Color online) The binned data (upper panel), and the raw data (lower panel): the

photon durations. In both panels, we show also the clean data. We show also misinterpretations
with dashed arrows (black: off). Further description is presented in the text.
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the noise also from the binned data is simple. We show with arrows the events that
are missed (green: missed on event, black: missed off event) when thresholding
the binned data, with: threshold= 3. In the lower panel we show the raw data: the
photon durations in the order recorded (blue) with the real identification (in green).
Clearly, this trajectory is smoother than the binned data. Nevertheless, in this case
also the binned data is not “too” noisy. We show in the plots cases where filtering
the raw data is simple but the binned data is “too” noisy. These are labeled with,
“?” and “‡” in both panels.

A.2. A more complicated case

In this case the data was also generated from KS 2A, yet here the rate values are
(scaled units): λon = 1/10, γon = 1, λoff = 1/49, γoff = 1/10. Here, the rate is
changed for controlling the off durations. In this case, the rate value is just 1/49
where in the previous example λoff = 1/99. Since in this example λoff is faster,
there are many off events with few photons. Many fast off events increases the
noise: there are not so few off events that do not have the required amount of
photons needed in order that in that event we will detect a slow photon. We see
in this example that the binned data is rather noisy in comparison with the raw
data representation of photon durations in the order recorded. We solved such data
with the methods of the main text (see Table 1). In Fig. A.2, we show with arrows

Fig. A.2. Trajectories from a more complicated case. Panels are similar with those in the previous
figure. The description is presented in the text.

B
io

ph
ys

. R
ev

. L
et

t. 
20

13
.0

8:
10

9-
13

6.
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 1

09
.6

4.
21

1.
12

9 
on

 0
1/

22
/1

4.
 F

or
 p

er
so

na
l u

se
 o

nl
y.



January 8, 2014 15:51 WSPC/S1793-0480 204-BRL 1330001

Mathematical Treatments that Solve Single Molecules 133

all the cases where the real binned data is on but the recorded binned data is
smaller than the threshold (threshold = 3). We show these cases also in the raw
data representation. At least cases 2 and 3 (in chronological order) are solved with
the filter presented in the main text but are missed in the binned data with any
filtering technique. The new filter is therefore at least 25% better.

A.3. The complicated case

In this case, the data was also generated from KS 2A in the main text, yet the rate
values are (scaled units): λon = 1/10, γon = 1, λoff = 1/33, γoff = 1/10. We have

(a)

(b)

Larger bin: bin = 3.99

(c)

Fig. A.3. Trajectories from KS 2A in the main text with rate values resulting in a rather noisy
case. Panels are similar with those in the previous figure. Yet here we have three panels (a), (b),
(c): the third panel is a trajectory with a larger bin size than in Fig. A.3(a). The description is
presented in the text.
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changed the rate controlling the off durations: here λoff is just 1/33 where in the
previous examples λoff = 1/49 and λoff = 1/99.

In this setup there are many off events with few photons: there are short events
shorter than in the previous example. This increases the noise: there are many off
events that do not have the required amount of photons needed in order seeing a very
slow one. Again, we see here that the binned data is rather noisy, clearly, relative
with the raw data representation of photon durations in the order recorded. We
solved also such data with the methods of the main text (see Table 1). In Fig. A.3,
we show with arrows all the cases where the binned data is on but smaller than
the threshold; here, threshold = 3. These are shown in green. We show with a black
arrow when an off event having many photons in a bin. Here, this is a bin larger
than 3. We show all these cases also in the raw data representation. At least cases
1, 2 and 9 (in a chronological order) are solved with the filter presented in the main
text yet are missed in the binned data with any filtering technique. Therefore here
the new filer is at least 33% better than binning. We show in panel 3 that a larger
bin size does not improve the situation: one additional on event is identified but
one off event has many photons in a bin and is not detected.
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